• Title/Summary/Keyword: Supercritical Methanol

Search Result 68, Processing Time 0.035 seconds

Scale-up Polymerization of L -Lactide in Supercritical Fluid (초임계 유체에서 L-Lactide의 Scale-up 중합)

  • Prabowo, Benedictus;Kim, Se-Yoon;Choi, Dong-Hoon;Kim, Sao-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.284-288
    • /
    • 2011
  • For the purpose of the pre-industry production of poly(L-lactide) (PLLA) and full understanding of the supercritical polymerization system, large scale polymerization of L-iactide initiated by 1-dodecano/stannous 2-ethyl-hexanoate (DoOH/Sn(Oct)$_2$) was carried out in supercritical chlorodifluoromethane under various reaction conditions (time, temperature and pressure)and reactants (monomer and supercritical solvent) concentrations. A 3 L sized-reactor system was used throughout this study. The monomer conversion increased to 72% on increasing reaction time to 5 h. The molecular weight of PLLA product also increased to 68000 g/moi over the same period. An increase in monomer concentration resulted in a higher molecular weight, up to 144000 g/mol and 97% of monomer conversion. Raising the reaction pressure from 130 to 240 bar also resulted in an increased monomer conversion and molecular weight. To increase heat resistivity of PLLA, methanol treatment and heat-vacuum methods were evaluated. Both of them successfully improved the heat resistivity property of PLLA.

The extraction condition of pungent compounds from Zanthoxylum piperitum D.C pericarps by using supercritical fluid extraction (초임계유체 추출에 의한 초피나무 과피 중 신미성분의 추출조건)

  • Lee, Chang-Joo;Kim, Myung-Seok;Shen, Jing-Yu;Kim, Yong-Doo;Shin, Jae-Han
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.1
    • /
    • pp.19-23
    • /
    • 2003
  • The optimum extraction condition of pungent component from Zanthoxylum piperitum D.C pericarps by using supercritical fluid extraction(SFE) was investigated. The optimum condition of SFE was $300kg/cm^2$ of pressure, $60\;^{\circ}C$ of extraction temperature, 80% of $CO_2$ fluid, 20% of modifier(methanol) volume and 20 min of extraction time. The extraction efficiency between the classical solvent extraction method and SFE was studied. About 40% of extraction efficiency was improved when SFE was applied.

Extraction of Phenolic Compounds from grape Seed Using Supercritical $CO_2$ and Ethanol as a Co-solvent (초임계 이산화탄소와 에탄올 보조용매를 이용한 포도씨로부터의 페놀성 화합물의 추출)

  • Lee, Won-Young;Chang, Kyu-Seob;Choi, Yong-Hee
    • Food Science and Preservation
    • /
    • v.7 no.2
    • /
    • pp.177-183
    • /
    • 2000
  • A supercritical fluid extraction was performed for the extraction of phenolics from grape seeds which up to now have been discarded. The optimum condition for extraction process was predicted through response surface methodology using central composit experimental design. The extraction amount of grape seed phenolics was increased by increasing extraction temperature, pressure, and concentration of co-solvent (ethanol). The optimum extraction conditions were 84.83$^{\circ}$C, 51.50MPa and 1.27% ethanol. The yield of phenolics using SFE was higher with 3 folds than ethanol and 4 folds than hexane but less than 80% methanol. In the respects of food poisoning, the approved solvents were restricted to ethanol and hexane. So, SFE for extraction of phenolics could be powerful alternative method for solvent extraction.

  • PDF

Enhancement in the Textural Properties and Hydrophobicity of Tetraethoxysilane-based Silica Aerogels by Phenyl Surface Modification

  • Dhavale, Rushikesh P.;Parale, Vinayak G.;Kim, Taehee;Choi, Haryeong;Kim, Younghun;Lee, Kyu-Yeon;Jung, Hae-Noo-Ree;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.27-32
    • /
    • 2020
  • Robust and hydrophobic tetraethoxysilane (TEOS) based silica aerogel was synthesized by supercritical alcohol drying with surface modification using the phenyl based silica co-precursor (PTMS). The aerogels were synthesized by hydrolysis and polycondensation reaction in which TEOS and PTMS in methanol were reacted together in presence of oxalic acid and ammonium hydroxide as the catalysts. Supercritical alcohol dried PTMS/TEOS composite silica aerogel were examined for the hydrophobicity, chemical interaction, surface morphology, and textural characteristics. The hydrophobic silica-based aerogels were characterized by Fourier transform infrared spectroscopy to investigate the presence of functional groups and chemical bonds. The prepared silica demonstrates hydrophobicity (76°-149°), a high specific surface area (398 ㎡/g to 739 ㎡/g). The present investigation provides a simple approach to synthesize hydrophobic and thermally stable silica aerogels.

Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent (초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성)

  • Suh, Sang-Chul;Cho, Sung-Gill;Hong, Joo-Heon;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).

Lipid Extraction from Nannochloropsis sp. Microalgae for Biodiesel Production Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Nannochloropsis sp. 미세조류로부터 바이오디젤 생산용 지질의 추출)

  • Choi, Kyung-Seok;Ryu, Jae-Hun;Park, Dong-Jun;Oh, Sea-Cheon;Kwak, Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.205-210
    • /
    • 2015
  • In this paper, microalgae lipid extractions were performed using conventional organic solvent and supercritical carbon dioxide (SC-$CO_2$) for biodiesel-convertible lipid fractions. The highest levels (58.31%) of fatty acid methyl ester (FAME) content in the lipid extracted by SC-$CO_2$ was obtained, and 18.0 wt.% crude lipid yield was achieved for Bligh-Dyer method. In the SC-$CO_2$ extraction, methanol as a co-solvent was applied to increase the polarity of extract. The experimental results indicated that crude lipid yield, FAME content and yield extracted by combination of SC-$CO_2$ with methanol were 12.5 wt.%, 56.32% and 7.04 wt.%, respectively, and this method could reduce the extraction time from 2 hour to 30 min when compared to SC-$CO_2$ extraction. Therefore, SC-$CO_2$ extraction is proven to be an environmentally-friendly and an effective method for lipid extraction from microalgae.

Extraction of ${\beta}$-carotene from Ascidian Tunic [Halocynthia roretzi] using Supercritical Carbon Dioxide and Co-solvent (초임계 이산화탄소를 이용만 우렁쉥이 껍질로부터 ${\beta}$-carotene 추출)

  • Kang, In-Sook;Youn, Hyun-Seok;Park, Ji-Yeon;Chun, Byung-Soo
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.194-198
    • /
    • 2006
  • Dried raw Ascidians(Halocynthia roretzi) shells harvested from fish farms in southern coast area in Korea were used to extract ${\beta}$-carotene using supercritical carbon dioxide($SCO_2$) and with ethanol as a co-solvent at the range of temperatures and pressures, from 25 to $65^{\circ}C$ and 100 to 350 bar respectively. The size of the dried Ascidians shells was around $850{\mu}m$. The system used this study was a semi-batch flow type high pressure unit. The efficiency of ${\beta}$-carotene extraction using $SCO_2$ with and without co-solvent, ethanol, influenced to pressure and temperature changes. The highest solubility of ${\beta}$-carotene in $SCO_2$ was 1.35 mg/g for ${\beta}$-carotene at $35^{\circ}C$ and 350 bar. With addition of 2(v/v%) ethanol the recovery of ${\beta}$-carotene was 93%. As a result of using n-hexane and methanol for rinse, at $35^{\circ}C$ and 350 bar the amount of ${\beta}$-carotene by methanol rinse was 5 times higher than that of n-hexane rinse.

A Comparative Study on the Solvent Extraction and Supercritical Fluid Extration Method of ${\beta}-Ecdysone$ in Achyranthis radix (우슬 중 ${\beta}-Ecdysone$의 초임계추출법(SFE)과 용매추출법의 비교)

  • Kim, Mi-Ra;Kim, Myong-Seok;Shim, Jae-Han
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.197-201
    • /
    • 2001
  • Extraction efficiency of ${\beta}-ecdysone$ in Achyranthis radix was investigated using the methods of solvent extraction and supercritical fluid extraction (SFE). The optimum SFE conditions for the analysis of ${\beta}-ecdysone$ in A. radix were 300 atm, $80^{\circ}C$, 100 ml of extraction volume, and 20% ratio of modifier(methanol). As revealed through SFE, detection limit of ${\beta}-ecdysone$ in A. radix was 5 ng and recoveries of ${\beta}-ecdysone$ in A. radix shoots and root were $90.7{\sim}93.5%$ and $77.8{\sim}81.9%$, respectively. Recoveries of ${\beta}-ecdysone$ in A. radix shoots and root through solvent extraction were $76.4{\sim}93.0%$ and $80.6{\sim}93.1%$, respectively. ${\beta}-Ecdysone$ content was determined to be highest at 654.9 ppm in the first year A. radix roots harvested in August.

  • PDF

Effect of Alcohols on the Dry Etching of Sacrificial SiO2 in Supercritical CO2 (초임계 이산화탄소를 이용한 웨이퍼의 건식 식각에서 알콜 첨가제의 효과)

  • Kim, Do-Hoon;Jang, Myoung-Jae;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.280-286
    • /
    • 2012
  • The dry etching of sacrificial $SiO_2$ was performed in supercritical carbon dioxide. The etching of boron phosphor silica glass (BPSG), tetraethyl orthosilicate (TEOS), thermal $SiO_2$, and Si-nitride (SiN) was investigated by using a two chamber system with HF/py etchant and alcohol additives. The etch rate of sacrificial $SiO_2$ increased upon the addition of methanol. The etch selectivity of BPSG with respect to SiN was highest with IPA although the highest etch rate was resulted from methanol except BPSG. The etch rate increased with the temperature in HF/py/MeOH system. Especially the increase of the etch rate was much higher for BPSG with an increase in the reaction temperature. The etch residue was not reduced apparently upon the addition of alcohol cosolvents to HF/py. While the etch rate in HF/$H_2O$ was higher than HF/py/alcohol system, the rate decreased with the addition of alcohols to HF/$H_2O$. The cantilever beam structure of high aspect ratios was released by the dry ething in supercritical carbon dioxide without damage.

A Study on the Thermodynamic Analysis and the Computer Simulation for the $CO_2$ and $H_{2}S$ Capture Process Using Methanol as a Solvent (메탄올 용매를 이용한 이산화탄소와 황화수소 포집공정의 열역학적 해석 및 전산모사에 관한 연구)

  • Cho, Jung-Ho;Lee, Ji-Hwan
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.287-292
    • /
    • 2008
  • In this study, computer simulation works have been performed for the capture process of the $CO_2$ and $H_{2}S$ gases contained in the effluent stream using methanol aqueous solution. In order to increase the solubilities of the $CO_2$ and $H_{2}S$ in the methanol aqueous stream, the operating pressure of the absorber was raised to 30 bar and the feeding temperature of the solvent was lowered to $-20^{\circ}C$ by using refrigeration cycle. NRTL liquid activity coefficient model was used to estimate the liquid phase nonidealities for methanol and water. Soave-Redlich-Kwong equation of state was used for the vapor phase nonidealities. Henry's law option was also used to calculate the solubilities of the supercritical noncondensible gases into the methanol aqueous solvent stream.

  • PDF