DOI QR코드

DOI QR Code

Enhancement in the Textural Properties and Hydrophobicity of Tetraethoxysilane-based Silica Aerogels by Phenyl Surface Modification

  • Dhavale, Rushikesh P. (Department of Materials Science and Engineering, Yonsei University) ;
  • Parale, Vinayak G. (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Taehee (Department of Materials Science and Engineering, Yonsei University) ;
  • Choi, Haryeong (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Younghun (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Kyu-Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Jung, Hae-Noo-Ree (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2020.06.03
  • Accepted : 2020.06.29
  • Published : 2020.06.30

Abstract

Robust and hydrophobic tetraethoxysilane (TEOS) based silica aerogel was synthesized by supercritical alcohol drying with surface modification using the phenyl based silica co-precursor (PTMS). The aerogels were synthesized by hydrolysis and polycondensation reaction in which TEOS and PTMS in methanol were reacted together in presence of oxalic acid and ammonium hydroxide as the catalysts. Supercritical alcohol dried PTMS/TEOS composite silica aerogel were examined for the hydrophobicity, chemical interaction, surface morphology, and textural characteristics. The hydrophobic silica-based aerogels were characterized by Fourier transform infrared spectroscopy to investigate the presence of functional groups and chemical bonds. The prepared silica demonstrates hydrophobicity (76°-149°), a high specific surface area (398 ㎡/g to 739 ㎡/g). The present investigation provides a simple approach to synthesize hydrophobic and thermally stable silica aerogels.

Keywords

References

  1. V. G. Parale, K. Y. Lee, and H. H. Park, "Flexible and transparent silica aerogels: an overview", J. Korean Ceramic Soc., 54(3), 184 (2017). https://doi.org/10.4191/kcers.2017.54.3.12
  2. K. Y. Lee, V. D. Phadtare, H. Choi, S. H. Moon, J. I. Kim, Y. K. Bae, and H. H. Park, "Chemically Bonded Thermally Expandable Microsphere-silica Composite Aerogel with Thermal Insulation Property for Industrial Use", J. Microelectron. Packag. Soc., 26(2), 1 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.001
  3. V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, and J. Phalippou, "Acoustic properties and potential applications of silica aerogels", J. Non-Cryst. Solids, 186, 244 (1995). https://doi.org/10.1016/0022-3093(95)00049-6
  4. K. I. Jensen, J. M. Schultz, and F. H. Kristiansen, "Development of windows based on highly insulating aerogel glazings", J. Non-Cryst. Solids., 350, 351 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.06.047
  5. I. Smirnova, S. Suttiruengwong, M. Seiler, and W. Arlt, "Dissolution Rate Enhancement by Adsorption of Poorly Soluble Drugs on Hydrophilic Silica Aerogels", Pharm. Dev. Technol., 9(4), 443 (2004). https://doi.org/10.1081/PDT-200035804
  6. S. J. Wang, H. H. Park, and G. Y. Yeom, "A Preliminary Study on the Etching Behavior of $SiO_2$ Aerogel Film with $CHF_3$ Gas", J. Korean Phys. Soc., 33, S135 (1998).
  7. C. E. Carraher Jr., "General topics: Silica aerogels-properties and uses", Polym. News, 30(12), 386 (2005). https://doi.org/10.1080/00323910500402961
  8. H. Maleki, L. Duraes, and A. Portugal, "An overview on silica aerogels synthesis and different mechanical reinforcing strategies", J. Non-Cryst. Solids, 385, 55 (2014). https://doi.org/10.1016/j.jnoncrysol.2013.10.017
  9. A. C. Pierre and G. M. Pajonk, "Chemistry of Aerogels and Their Applications", Chem. Rev., 102(11), 4243 (2002). https://doi.org/10.1021/cr0101306
  10. S. S. Kistler, "Coherent Expanded Aerogels and Jellies", Nature, 127, 741 (1931). https://doi.org/10.1038/127741a0
  11. T. Blaszczynski, A. Slosarczyk, and M. Morawski, "Synthesis of Silica Aerogel by Supercritical Drying Method", Proce. Engr., 57, 200 (2013). https://doi.org/10.1016/j.proeng.2013.04.028
  12. C. J. Brinker and S.W. Sherere, "Sol-Gel Science: The physics and Chemistry of Sol-Gel Processing", Academic Press, San Diego, 501, (1990).
  13. V. G. Parale, W. Han, H. N. R. Jung, K. Y. Lee, and H. H. Park, "Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area", Solid State Sci., 75, 63 (2018). https://doi.org/10.1016/j.solidstatesciences.2017.10.016
  14. V. G. Parale, H. N. R. Jung, W. Han, K. Y. Lee, D. B. Mahadik, and H. H. Park, "Improvement in the high temperature thermal insulation performance of $Y_2O_3$ opacified silica aerogels", J. Alloy Compd., 727, 871 (2017). https://doi.org/10.1016/j.jallcom.2017.08.189
  15. Q. Wang, D. B. Mahadik, P. Meti, Y. D. Gong, K. Y. Lee, and H. H. Park, "Dioxybenzene-bridged hydrophobic silica aerogels with enhanced textural and mechanical properties", Microporous Mesoporous Mater., 294, 109863 (2020). https://doi.org/10.1016/j.micromeso.2019.109863
  16. H. Y. Nah, V. G. Parale, K. Y. Lee, H. Choi, T. Kim, C. H. Lim, J. Y. Seo, Y. S. Ku, J. W. Park, and H. H. Park, "Silylation of sodium silicate-based silica aerogel using trimethylethoxysilane as alternative surface modification agent", Journal of Sol-Gel Science and Technology, 87(2), 319 (2018). https://doi.org/10.1007/s10971-018-4729-4
  17. Y. Kim, T. Kim, J. G. Shim, and H. H. Park, "The Effect of Acetonitrile on the Texture Properties of Sodium Silicate Based Silica Aerogels", J. Microelectron. Packag. Soc., 25(4), 143 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.143
  18. Y. Pan, S. He, L. Gong, X. Cheng, C. Li, Z. Li, Z. Liu, and H. Zhang, "Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying", Mater. Des., 113, 246, (2017). https://doi.org/10.1016/j.matdes.2016.09.083
  19. A. V. Rao, R. R. Kalesh, and G. M. Pajonk, "Hydrophobicity and physical properties of TEOS based silica aerogels using phenyltriethoxysilane as a synthesis component", J. Mater. Sci., 38(21), 4407 (2003). https://doi.org/10.1023/A:1026311905523
  20. K. Y. Lee, H. Y. Nah, V. G. Parale, and H. H Park, "Methyltrimethoxysilane silica aerogel composite with carboxylfunctionalized multi-wall carbon nanotubes", Int. J. Nanotechnol., 15(6), 11 (2018).
  21. D. Y. Nadargi and A. V. Rao, "Methyltriethoxysilane: New precursor for synthesizing silica aerogels", J. Alloy Compd., 467(1), 397 (2009). https://doi.org/10.1016/j.jallcom.2007.12.019
  22. V. G. Parale, T. Kim, K. Y. Lee, V. G. Phadtare, R. P. Dhavale, H. N. Jung, and H. H. Park, "Hydrophobic $TiO_2-SiO_2$ composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity", Ceram. Int., 46(4), 4939 (2020). https://doi.org/10.1016/j.ceramint.2019.10.231
  23. Y. A. Attia (Ed.), "Sol-Gel Processing and Applications", Plenum Press, New York, 237 (1994).
  24. J. P. Rolland, R. Van Dam, D. A. Schorzman, S. R. Quake, and J. M. DeSimone, "Solvent-Resistant Photocurable "Liquid Teflon" for Microfluidic Device Fabrication", J. Am. Chem. Soc., 126(8), 2322 (2004). https://doi.org/10.1021/ja031657y
  25. T. M. Parrill, "Transmission infrared study of acid-catalyzed sol-gel silica coatings during room ambient drying", J. Mater. Res., 7(8), 2230 (1992). https://doi.org/10.1557/JMR.1992.2230
  26. J. K. Hong, H. R. Kim, and H. H. Park, "The effect of sol viscosity on the sol-gel derived low density $SiO_2$ xerogel film for intermetal dielectric application", Thin Solid Films, 332(1), 449 (1998). https://doi.org/10.1016/S0040-6090(98)01045-1
  27. A. Y. Jeong, S. M. Koo, and D. P. Kim, "Characterization of Hydrophobic $SiO_2$ Powders Prepared by Surface Modification on Wet Gel", J. Sol-Gel. Sci. Techn., 19, 483 (2000). https://doi.org/10.1023/A:1008716017567
  28. F. Schwertfeger, D. Frank, and M. Schmidt, "Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying", J. Non-Cryst. Solids., 225, 24 (1998). https://doi.org/10.1016/S0022-3093(98)00102-1
  29. H. Choi, V. G. Parale, T. Kim, Y. S. Choi, J. Tae, and H. H. Park, "Structural and mechanical properties of hybrid silica aerogel formed using triethoxy(1-phenylethenyl)silane", Microporous Mesoporous Mater., 298, 110092 (2020) https://doi.org/10.1016/j.micromeso.2020.110092

Cited by

  1. 벤젠 유기물 도입에 따른 실리카 기반 에어로겔의 소수성 및 기계적 특성 연구 vol.27, pp.4, 2020, https://doi.org/10.6117/kmeps.2020.27.4.135
  2. 주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해 vol.28, pp.1, 2021, https://doi.org/10.6117/kmeps.2021.28.1.061