• 제목/요약/키워드: Supercavitating Flow

검색결과 36건 처리시간 0.021초

수퍼캐비테이션 익열의 유동특성 해석 (Analysis of Flow Characteristics of Supercavitating Cascade)

  • 이명호;이종원
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.803-810
    • /
    • 1992
  • 본 연구에서는 서산등과 Nishiyama등이 제시한 특이점 분포법에 의한 기초식 을 비선형으로 해석하기 위하여 익과 유한한 길이의 캐비티의 자유유선에 용출, 와, 이중용출 등의 특이점을 분포시켜서 수퍼캐비테이션을 발생시키는 익열의 유동장을 지 배하는 비선형의 적분방정식을 복소포텐셜로 나타내고 경계 요소법을 이용하여 수치계 산함으로써 수퍼비테이션익열의 유동에서의 수력특성을 구하는 데 있다.

Drag reduction of a rapid vehicle in supercavitating flow

  • Yang, D.;Xiong, Y.L.;Guo, X.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.35-44
    • /
    • 2017
  • Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV) is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE) turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

초공동(超空洞) 유동 문제의 형상 설계민감도 해석 (Shape Design Sensitivity Analysis of Supercavitating Flow Problem)

  • 최주호;곽현구
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1320-1327
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in this flow problem.

초공동(超空洞) 유동 문제의 형상 설계민감도 해석 (Shape Design Sensitivity Analysis of Supercavitating Flow Problem)

  • 최주호;곽현구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1047-1052
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-touse features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for and optimization procedure are addressed in this flow problem.

  • PDF

선형이론에 의한 Supercavitation 익렬의 유동해석 (The Flow Analysis of Supercavitating Cascade by Linear Theory)

  • 박이동;황윤
    • 태양에너지
    • /
    • 제16권2호
    • /
    • pp.79-86
    • /
    • 1996
  • Supercavitation이 발생하는 익주위의 유동을 선형이론으로 해석하기 위하여 유동장에 용출과와를 분포시켜서 선형 적분방정식을 유도하고, 익의 영각과 cavitation 수의 변화에 따른 양력계수, 항력계수를 구하여 실험치와 비교하였다. 특이점법을 이용한 선형이론에 의하여 구한 계산치를 실험치와 비교한 결과 익의 영각이 작을 경우에는(${\alpha}<10^{\circ}$) 잘 일치하지만 영각이 클 경우(${\alpha}<10^{\circ}$)에는 오차가 크므로 선형이론에 의한 해석은 적합하지 않았다. 선형이론에 의한 해석에서 실험치와의 오차가 커지는 주요한 원인은 cavity의 모델이 서로 다르기 때문이며, 따라서 유한한 길이의 cavity가 발생하여도 교란속도는 무한한 후방까지 영향을 미치므로 익렬의 전후에서 운동량이 보존되도록 후류를 모델화하여야 함을 알았다.

  • PDF

2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석 (A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow)

  • 김형태;이현배
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

Numerical analysis for supercavitating flows around axisymmetric cavitators

  • Kwack, Young Kyun;Ko, Sung Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.325-332
    • /
    • 2013
  • Diffuse interface model for numerical analysis was used to compute supercavitating flows around various cavitators. The ambient pressures of 2 atm permitted cavitation studies in a range of cavitation number, ${\sigma}=0.1$ to 1.0 on selected conical and disk-headed cavitors. The computed results were compared with relation by Reichardt. Drag coefficient obtained from pressure forces acting on the cavitator also compared well with those obtained from analytical relations.

비선형이론에 의한 Supercavitation 익렬의 유동해석 (The Flow Analysis of Supercavitating Cascade by Nonlinear Theory)

  • 박이동;황윤
    • 태양에너지
    • /
    • 제17권1호
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

3차원 축대칭 캐비테이터의 초월공동유동 수치해석 (A Numerical Analysis of the Supercavitating Flow around Three-Dimensional Axisymmetric Cavitators)

  • 김지혜;장현길;안병권;이창섭
    • 대한조선학회논문집
    • /
    • 제50권3호
    • /
    • pp.160-166
    • /
    • 2013
  • Recently submerged objects moving at high speed such as a supercavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study, we are focusing our attention on supercavitating flows around axisymmetric cavitators; a numerical method based on inviscid flow is developed and predicted supercavities around several shapes of 2D and 3D cavitators are presented. The results are validated by comparison of existing theoretical and empirical results. In addition, characteristic features of supercavity shapes and drag forces acting on a real scale torpedo are evaluated according to practically appropriate operating conditions.

초월공동 수중운동체용 제어핀의 유체력 특성에 대한 실험연구 (An Experimental Study on Hydrodynamic Characteristics of a Control Fin for a Supercavitating Underwater Vehicle)

  • 정소원;박상태;안병권
    • 대한조선학회논문집
    • /
    • 제55권1호
    • /
    • pp.75-82
    • /
    • 2018
  • Wedge-shaped fins are generally used to provide sufficient forces and moments to control and maneuver a supercavitating vehicle. There are four fins placed along the girth of the vehicle, near he tail: two of the fins are horizontal and the other two fins are vertical. In a fully developed supercavitating flow condition, a part of the fin is in a cavity pocket and the other is exposed to water. In this paper, experimental investigations of hydrodynamic characteristics of the wedge-shaped fin models are presented. Experiments were conducted at a cavitation tunnel of the Chungnam National University. We first closely observed the typical formation of wake cavitation and measured lift and drag forces acting on two different test models. Next, using a special device for generating natural and artificial supercavities, we investigated hydrodynamic forces at different cavitation number conditions. This work provides a basis for interpreting the cavity stability and hydrodynamic characteristics of the wedge-shaped control fin for a supercavitating vehicle.