Browse > Article
http://dx.doi.org/10.3744/JNAOE.2013.5.3.325

Numerical analysis for supercavitating flows around axisymmetric cavitators  

Kwack, Young Kyun (Department of Mechanical Design Engineering, Chungnam National University)
Ko, Sung Ho (Department of Mechanical Design Engineering, Chungnam National University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.5, no.3, 2013 , pp. 325-332 More about this Journal
Abstract
Diffuse interface model for numerical analysis was used to compute supercavitating flows around various cavitators. The ambient pressures of 2 atm permitted cavitation studies in a range of cavitation number, ${\sigma}=0.1$ to 1.0 on selected conical and disk-headed cavitors. The computed results were compared with relation by Reichardt. Drag coefficient obtained from pressure forces acting on the cavitator also compared well with those obtained from analytical relations.
Keywords
Diffuse interface model; Supercavitating flow; Cavity length; Drag force; Drag coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saurel, R., Franquet, E., Daniel, E. and Le Metayer, O., 2007. A relaxation-projection method for compressible flows. Part I. The numerical equation of state for the Euler equations. Journal of Computational Physics, 223(2), pp.822-845.   DOI   ScienceOn
2 Abgrall, R., 1996. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. Journal of Computational Physics, 125(1), pp.150-160.   DOI   ScienceOn
3 Abgrall, R. and Saurel, R., 2003. Discrete equations for physical and numerical compressible multiphase mixtures. Journal of Computational Physics, 186(2), pp.361-396.   DOI   ScienceOn
4 Saurel, R., Petitpas, F. and Berry, R., 2009. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5), pp.1678-1712.   DOI   ScienceOn
5 Scheffer, D.R. and Zukas, J.A., 2000. Practical aspects of numerical simulation of dynamic events: material interfaces. International Journal of Impact Engineering, 24(8), pp.821-842.   DOI   ScienceOn
6 Self, M.W. and Ripken, J.F., 1955. Steady-state cavity studies in a free-jet water tunnel. St. Anthony Falls Hydraulic Laboratory Report No. 47.
7 Toro, E.F., Spruce, M. and Speares, W., 1994. Restoration of the contact surface in the HLL Riemann solver. Shock Waves, 4, pp.25-34.   DOI   ScienceOn
8 Toro, E.F., 1997. Riemann solvers and numerical methods for fluids dynamics : a practical introduction. New York: Springer.
9 Wood, A.B., 1930. A textbook of sound. London: Bell and Sons Ltd.
10 Gueyffier, D., Li, J., Nadim, A., Scardovelli, R. and Zaleski, S., 1999. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 152(2), pp.423-456.   DOI   ScienceOn
11 Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, pp.201-225.   DOI   ScienceOn
12 Hirt, C.W., Amsden, A.A. and Cook, J.L., 1974. An arbitrary Lagrangian Eulerian computing method for all flow speeds. Journal of Computational Physics, 14(3), pp.227-253.   DOI   ScienceOn
13 Karni, S., 1994. Multicomponent flow calculations by a consistent primitive algorithm. Journal of Computational Physics, 112(1), pp.31-43.   DOI   ScienceOn
14 Plesset, M.S. and Shaffer, P.A., 1948. Cavity drag in two and three dimensions. Journal of Applied Physics, 19(10), pp.934-939.   DOI
15 Murrone, A. and Guillard, H., 2005. A five equation reduced model for compressible two phase flow problems. Journal of Computational Physics, 202(2), pp.664-698.   DOI   ScienceOn
16 Newman, J.N., 1977. Marine hydrodynamics. The MIT Press: Cambridge.
17 Petitpas, F., Franquet, E., Saurel, R. and Le Metayer, O., 2007. A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks. Journal of Computational Physics, 225(2), pp.2214-2248.   DOI   ScienceOn
18 Reichardt, H., 1946. The laws of cavitation bubbles at axially symmetric bodies in a flow. Ministry of Aircraft Production (Britain), Report and Translations No. 766.
19 Saurel, R. and Abgrall, R., 1999. A multiphase Godunov method for compressible multifluid and multiphase flows. Journal of Computational Physics, 150, pp.425-467.   DOI   ScienceOn
20 Saurel, R., Gavrilyuk, S. and Renaud, F., 2003. A multiphase model with internal degrees of freedom: application to shockbubble interaction. Journal of Fluid Mechanics, 495, pp.283-321.   DOI   ScienceOn
21 Franc, J.P. and Michel, J.M., 2004. Fundamentals of cavitation. Springer.
22 Abgrall, R. and Perrier, V., 2006. Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flow. SIAM Journal of Multiscale Modeling and Simulation, 5(1), pp.84-115.   DOI   ScienceOn
23 Farhat, C. and Roux, F.X., 1991. A method for finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), pp.1205-1227.   DOI