• Title/Summary/Keyword: Supercapacitors

Search Result 187, Processing Time 0.033 seconds

Preparation and Electrochemical Characterization of Porous Carbon Foam from Waste Floral Foam for Supercapacitors (폐 플로랄 폼을 이용한 슈퍼커패시터용 다공성 탄소 폼 제조 및 전기화학 성능 평가)

  • Lee, Byoung-Min;Park, Jin-Ju;Park, Sang-Won;Yun, Je Moon;Choi, Jae-Hak
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.369-378
    • /
    • 2022
  • The recycling of solid waste materials to fabricate carbon-based electrode materials is of great interest for low-cost green supercapacitors. In this study, porous carbon foam (PCF) was prepared from waste floral foam (WFF) as an electrode material for supercapacitors. WFF was directly carbonized at various temperatures of 600, 800, and 1,000 ℃ under an inert atmosphere. The WFF-derived PCF (C-WFF) was found to have a specific surface area of 458.99 m2/g with multi-modal pore structures. The supercapacitive behavior of the prepared C-WFF was evaluated using a three-electrode system in a 6 M KOH aqueous electrolyte. As a result, the prepared C-WFF as an active material showed a high specific capacitance of 206 F/g at 1 A/g, a rate capability of 36.4 % at 20 A/g, a specific power density of 2,500 W/kg at an energy density of 2.68 Wh/kg, and a cycle stability of 99.96 % at 20 A/g after 10,000 cycles. These results indicate that the C-WFF prepared from WFF could be a promising candidate as an electrode material for high-performance green supercapacitors.

Fiber Based Supercapacitors for Wearable Application (웨어러블 응용을 위한 섬유형 슈퍼커패시터)

  • Jae Myeong Lee;Wonkyeong Son;Juwan Kim;Jun Ho Noh;Myoungeun Oh;Jin Hyeong Choi;Changsoon Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.303-325
    • /
    • 2023
  • Flexible fiber- or yarn-based one-dimensional (1-D) energy storage devices are essential for developing wearable electronics and have thus attracted considerable attention in various fields including ubiquitous healthcare (U-healthcare) systems and textile platforms. 1-D supercapacitors (SCs), in particular, are recognized as one of the most promising candidates to power wearable electronics due to their unique energy storage and high adaptability for the human body. They can be woven into textiles or effectively designed into diverse architectures for practical use in day-to-day life. This review summarizes recent important development and advances in fiber-based supercapacitors, concerning the active materials, fiber configuration, and applications. Active materials intended to enhance energy storage capability including carbon nanomaterials, metal oxides, and conductive polymers, are first discussed. With their loading methods for fiber electrodes, a summary of the four main types of fiber SCs (e.g., coil, supercoil, buckle, and hybrid structures) is then provided, followed by demonstrations of some practical applications including wearability and power supplies. Finally, the current challenges and perspectives in this field are made for future works.

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan;Saravanamoorthy, Somasundaram;Kim, Seung-Hyun;Chung, Ill-Min
    • Carbon letters
    • /
    • v.24
    • /
    • pp.73-81
    • /
    • 2017
  • Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

Preparation and Electrochemical Characteristics of DAAQ/CNFs Composite electrode for Supercapacitor (DAAQ가 코팅된 슈퍼커패시터용 CNFs전극 활물질의 제조 및 전기 화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1226-1229
    • /
    • 2004
  • Supercapacitors, also known as electrochemical capacitors, are being extensively studied due to an increasing demand for energy-storage systems. These devices offer many advantages over conventional secondary batteries, which include the ability of fast charge propagation, long cycle-life and better storage efficiency. That is to say supercapacitor bridges the gap between conventional capacitors and batteries. A new type electric double layer capacitor (EDLC) also called supercapacitors. Recently, supercapacitors concerns about their high power density and energy density. So we experiment with EDLC by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. The electrode for supercapacitor was prepared by synthesis of DAAQ covered CNFs. CNFs could be covered with very thin DAAQ oligomer from the results of CV, XRD, DSC, SEM images, and TEM images. Dissolved electrode active material in NMP solution has been drop-coated on carbon plate. Its electrochemical characteristics were investigated by cyclic voltammograms. And compared with different electrolyte of aqueous type. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors with respect to specific capacity and scan rate dependency.

  • PDF

Novel Method to Confine Manganese Oxide Nanoparticles in Polyaniline Hollow Nanospheres and Its Supercapacitive Properties

  • Kwon, Hyemin;Lee, Jinho;Munkhbaatar, Naranchimeg;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.196.2-196.2
    • /
    • 2014
  • Nanostructuring the electrode surface is an emerging technology to improve the performance of supercapacitors since it can facilitate charge transfer, ion diffusion and electron propagation during electrochemical process. Fabrication of the electrode consisting of two or more materials together has also been focused on since it can provide synergetic effect such as broader working potential range and enhanced capacitance. In this work, we have used polyaniline (PANi) and manganese oxide (MnO2) as electrode materials. PANi is one of the promising electrode materials due to its high electrochemical activity, high doping level and stability. MnO2 is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. Firstly, we synthesized polystyrene nanospheres on MnO2 nanoparticles. MnO2-incorporated PANi hollow nanospheres were then fabricated by polymerizing aniline monomers on these PS nanospheres and dissolving the inner PS spheres. The surface morphology, electronic absorption and electrical conductivity of the electrode were analyzed using field-emission scanning electron microscope (FE-SEM), UV-visible spectrometer, and sheet resistivity meter, respectively. The electrochemical properties such as capacitance of the supercapacitors were also estimated using cyclic voltammetry.

  • PDF

Composite Materials with MWCNTs and Conducting Polymer Nanorods and their Application as Supercapacitors

  • Liua, Lichun;Yoo, Sang-Hoon;Park, Sung-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This study demonstrated the synthesis of high-surface-area metal-free carbonaceous electrodes (CE) from anodic aluminum oxide (AAO) templates, and their application as supercapacitors. Multi-walled Carbon nanotubes (MWCNTs) were interwoven into a porous network sheet that was attached to one side of AAO template through a vacuum filtration of the homogeneously dispersed MWCNT toluene solution. Subsequently, the conducting polymer was electrochemically grown into the porous MWCNT network and nanochannels of AAO, leading to the formation of a carbonaceous metal-free film electrode with a high surface area in the given geometrical surface area. Typical conducting polymers such as polypyrrole (PPY) and poly(3,4-ethylenedioxythiophene) (PEDOT) were examined as model systems, and the resulting electrodes were investigated as supercapacitors (SCs). These SCs exhibited stable, high capacitances, with values as high as 554 F/g, 1.08 F/$cm^2$ for PPY and 237 F/g, 0.98 F/$cm^2$ for PEDOT, that were normalized by both the mass and geometric area.

Study on the Electrochemical Characteristics of a EGaIn Liquid Metal Electrode for Supercapacitor Applications (수퍼커패시터 응용을 위한 EGaIn 액체 금속 전극의 전기화학 특성 연구)

  • SO, JU-HEE;KOO, HYUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.176-181
    • /
    • 2016
  • Recent years, supercapacitors have been attracting a growing attention as an efficient energy storage, due to their long-lifetime, device reliability, simple device structure and operation mechanism and, most importantly, high power density. Along with the increasing interest in flexible/stretchable electronics, the supercapacitors with compatible mechanical properties have been also required. A eutectic gallium-indium (EGaIn) liquid metal could be a strong candidate as a soft electrode material of the supercapacitors because of its insulating surface oxide layer for electric double layer formation. Here, we report the electrochemical study on the charging/reaction process at the interface of EGaIn liquid metal and electrolyte. Numerical fitting of the charging current curves provides the capacitance of EGaIn/insulating layer/electrolyte (${\sim}38F/m^2$). This value is two orders of magnitude higher than a capacitance of a general metal electrode/electrolyte interface.

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon;Mohammed, Latifatu;Kim, Sangjun;Manasi, Mwemezi;Isheunesu, Phiri;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.173-179
    • /
    • 2018
  • Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.

Fabrication of Porous Electrodes for Zinc-Ion Supercapacitors with Improved Energy Storage Performance (아연-이온 전기화학 커패시터의 에너지 저장 성능향상을 위한 다공성 전극 제조)

  • An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.505-510
    • /
    • 2019
  • Zn-ion supercapacitors (ZICs) show high energy densities with long cycling life for use in electronic devices. Porous Zn electrodes as anodes for ZICs are fabricated by chemical etching process using optimized conditions. The structures, morphologies, chemical bonding states, porous structure, and electrochemical behavior are examined. The optimized porous Zn electrode shows a root mean square of roughness of 173 nm and high surface area of $153{\mu}m^2$. As a result, ZIC using the optimized porous Zn electrode presents excellent electrochemical performance with high specific capacitance of $399F\;g^{-1}$ at current density of $0.5A\;g^{-1}$, high-rate performance ($79F\;g^{-1}$ at a current density of $10.0A\;g^{-1}$), and outstanding cycling stability (99 % after 1,500 cycles). The development of energy storage performance using synergistic effects of high roughness and high surface area is due to increased electroactive sites by surface functionalization of Zn electrode. Thus, our strategy will lead to a rational design and contribute to next-generation supercapacitors in the near future.

Fabrication of Nitrogen Self-Doped Porous Carbons from Melamine Foam for Supercapacitors (슈퍼커패시터용 멜라민 폼으로부터 질소가 자가 도핑된 다공성 탄소 재료의 제조)

  • Lee, Byoung-Min;Chang, Hyeong-Seok;Choi, Jae-Hak;Hong, Sung-Kwon
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.264-271
    • /
    • 2021
  • Porous carbons have been widely used as electrode material for supercapacitors. However, commercial porous carbons, such as activated carbons, have low electrochemical performance. Nitrogen-doping is one of the most promising strategies to improve electrochemical performance of porous carbons. In this study, nitrogen self-doped porous carbon (NPC) is prepared from melamine foam by carbonization to improve the supercapacitive performance. The prepared NPC is characterized in terms of the chemical structures and elements, morphology, pore structures, and electrochemical performance. The results of the N2 physisorption measurement, X-ray diffraction, and Raman analyses reveal that the prepared NPC has bimodal pore structures and pseudo-graphite structures with nitrogen functionality. The NPC-based electrode exhibits a gravimetric capacitance of 153 F g-1 at 1 A g-1, a rate capability of 73.2 % at 10 A g-1, and an outstanding cycling ability of 97.85 % after 10,000 cycles at 10 A g-1. Thus, the NPC prepared in this study can be applied as electrode material for high-performance supercapacitors.