Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.8.505

Fabrication of Porous Electrodes for Zinc-Ion Supercapacitors with Improved Energy Storage Performance  

An, Geon-Hyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.8, 2019 , pp. 505-510 More about this Journal
Abstract
Zn-ion supercapacitors (ZICs) show high energy densities with long cycling life for use in electronic devices. Porous Zn electrodes as anodes for ZICs are fabricated by chemical etching process using optimized conditions. The structures, morphologies, chemical bonding states, porous structure, and electrochemical behavior are examined. The optimized porous Zn electrode shows a root mean square of roughness of 173 nm and high surface area of $153{\mu}m^2$. As a result, ZIC using the optimized porous Zn electrode presents excellent electrochemical performance with high specific capacitance of $399F\;g^{-1}$ at current density of $0.5A\;g^{-1}$, high-rate performance ($79F\;g^{-1}$ at a current density of $10.0A\;g^{-1}$), and outstanding cycling stability (99 % after 1,500 cycles). The development of energy storage performance using synergistic effects of high roughness and high surface area is due to increased electroactive sites by surface functionalization of Zn electrode. Thus, our strategy will lead to a rational design and contribute to next-generation supercapacitors in the near future.
Keywords
energy; energy storage device; zinc-ion supercapacitor; electrode material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Simon, Y. Gogotsi and B. Dunn, Science, 343, 1210 (2014).   DOI
2 D.-Y. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 617 (2017).   DOI
3 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017).   DOI
4 G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012).   DOI
5 L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.-H. Yang and F. Kang, Energy Storage Mater., 13, 96 (2018).   DOI
6 G.-H. An, S. N. Cha and J. I. Sohn, Appl. Surf. Sci., 467-468, 1157 (2019).   DOI
7 Y. Tian, R. Amal and D.-W. Wang, Front. Energy Res., 4, 1 (2016).
8 H. Wang, M. Wang and Y. Tang, Energy Storage Mater., 13, 1 (2018).   DOI
9 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 182 (2018).   DOI
10 Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 640 (2018).   DOI
11 G.-H. An and H.-J. Ahn, J. Korean Powder Metall. Inst., 24, 96 (2017).   DOI
12 G.-H. An, D.-Y. Lee and H.-J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017).   DOI
13 G.-H. An, D.-Y. Lee and H.-J. Ahn, J. Mater. Chem. A, 5, 19714 (2017).   DOI
14 G.-H. An, H. Kim and H.-J. Ahn, ACS Appl. Mater. Interfaces, 10, 6235 (2018).   DOI
15 G.-H. An and H.-J. Ahn, Appl. Surf. Sci., 473, 77 (2019).   DOI
16 G.-H. An, H. Kim and H.-J. Ahn, J. Ind. Eng. Chem., 68, 146 (2018).   DOI