DOI QR코드

DOI QR Code

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon (Hanbat National University, Department of Applied Chemistry & Biotechnology) ;
  • Mohammed, Latifatu (Hanbat National University, Department of Applied Chemistry & Biotechnology) ;
  • Kim, Sangjun (Hanbat National University, Department of Applied Chemistry & Biotechnology) ;
  • Manasi, Mwemezi (Hanbat National University, Department of Applied Chemistry & Biotechnology) ;
  • Isheunesu, Phiri (Hanbat National University, Department of Applied Chemistry & Biotechnology) ;
  • Lee, Kwang Se (Hanbat National University, Department of Applied Chemistry & Biotechnology) ;
  • Ko, Jang Myoun (Hanbat National University, Department of Applied Chemistry & Biotechnology)
  • Received : 2018.03.30
  • Accepted : 2018.07.26
  • Published : 2018.12.25

Abstract

Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.

Keywords

Acknowledgement

Supported by : Korean ministry of trade, industry & energy

References

  1. Y. Ko, M. Kwon, W.K. Bae, B. Lee, S.W. Lee, J. Cho, Nat. Commun. 8 (2017) 536. https://doi.org/10.1038/s41467-017-00550-3
  2. S. Shi, C. Xu, C. Yang, J. Li, H. Du, B. Li, F. Kang, Particuology 11 (2013) 371-377. https://doi.org/10.1016/j.partic.2012.12.004
  3. M. Areir, Y. Xu, D. Harrison, J. Fyson, Mater. Sci. Eng. B 226 (2017) 29-38. https://doi.org/10.1016/j.mseb.2017.09.004
  4. S. Petty-Weeks, J.J. Zupancic, J.R. Swedo, Solid State Ionics 31 (1988) 117-125. https://doi.org/10.1016/0167-2738(88)90295-0
  5. S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein, Polym. Int. 47 (1998) 28-33. https://doi.org/10.1002/(SICI)1097-0126(199809)47:1<28::AID-PI3>3.0.CO;2-C
  6. C.-W. Liew, S. Ramesh, A.K. Arof, Int. J. Hydrogen Energy 39 (2014) 2917-2928. https://doi.org/10.1016/j.ijhydene.2013.07.092
  7. H. Li, W. Zhang, W. Xu, X. Zhang, Macromolecules 33 (2000) 465-469. https://doi.org/10.1021/ma990878e
  8. J. Zhang, T. Zhou, J. Qiao, Y. Liu, J. Zhang, Electrochim. Acta 111 (2013) 351-358. https://doi.org/10.1016/j.electacta.2013.07.182
  9. G. Ma, J. Li, K. Sun, H. Peng, J. Mu, Z. Lei, J. Power Sources 256 (2014) 281-287. https://doi.org/10.1016/j.jpowsour.2014.01.062
  10. C.-C. Yang, S.-T. Hsu, W.-C. Chien, J. Power Sources 152 (2005) 303-310. https://doi.org/10.1016/j.jpowsour.2005.03.004
  11. N. Kakati, J. Maiti, G. Das, S.H. Lee, Y.S. Yoon, Int. J. Hydrogen Energy 40 (2015) 7114-7123. https://doi.org/10.1016/j.ijhydene.2015.04.004
  12. C.-C. Yang, J. Membr. Sci. 288 (2007) 51-60. https://doi.org/10.1016/j.memsci.2006.10.048
  13. C.-C. Yang, G.M. Wu, Mater. Chem. Phys. 114 (2009) 948-955. https://doi.org/10.1016/j.matchemphys.2008.11.009
  14. G. Li, W. Zhang, J. Yang, X. Wang, J. Colloid Interface Sci. 306 (2007) 337-344. https://doi.org/10.1016/j.jcis.2006.10.052
  15. W. Zhang, Y. Fang, X. Wang, J. Membr. Sci. 303 (2007) 173-182. https://doi.org/10.1016/j.memsci.2007.07.011
  16. B. Zuo, Y. Hu, X. Lu, S. Zhang, H. Fan, X. Wang, J. Phys. Chem. C 117 (2013) 3396-3406.
  17. B. Szubzda, A. Szmaja, M. Ozimek, S. Mazurkieqicz, Appl. Phys. A 117 (2014) 1801-1809. https://doi.org/10.1007/s00339-014-8674-y
  18. Y.S. Ye, M.Y. Cheng, X.L. Xie, J. Rick, Y.J. Huang, F.C. Chang, et al., J. Power Sources 239 (2013) 424-432. https://doi.org/10.1016/j.jpowsour.2013.03.021

Cited by

  1. PVA-based supercapacitors vol.25, pp.7, 2019, https://doi.org/10.1007/s11581-019-03048-8
  2. Overview of Polyvinyl Alcohol Nanocomposite Hydrogels for Electro‐Skin, Actuator, Supercapacitor and Fuel Cell vol.20, pp.8, 2020, https://doi.org/10.1002/tcr.202000001
  3. Biomass-derived carbon electrodes for supercapacitors and hybrid solar cells: towards sustainable photo-supercapacitors vol.5, pp.19, 2018, https://doi.org/10.1039/d1se00954k