Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.5.264

Fabrication of Nitrogen Self-Doped Porous Carbons from Melamine Foam for Supercapacitors  

Lee, Byoung-Min (Department of Polymer Science and Engineering, Chungnam National University)
Chang, Hyeong-Seok (Department of Polymer Science and Engineering, Chungnam National University)
Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
Hong, Sung-Kwon (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.5, 2021 , pp. 264-271 More about this Journal
Abstract
Porous carbons have been widely used as electrode material for supercapacitors. However, commercial porous carbons, such as activated carbons, have low electrochemical performance. Nitrogen-doping is one of the most promising strategies to improve electrochemical performance of porous carbons. In this study, nitrogen self-doped porous carbon (NPC) is prepared from melamine foam by carbonization to improve the supercapacitive performance. The prepared NPC is characterized in terms of the chemical structures and elements, morphology, pore structures, and electrochemical performance. The results of the N2 physisorption measurement, X-ray diffraction, and Raman analyses reveal that the prepared NPC has bimodal pore structures and pseudo-graphite structures with nitrogen functionality. The NPC-based electrode exhibits a gravimetric capacitance of 153 F g-1 at 1 A g-1, a rate capability of 73.2 % at 10 A g-1, and an outstanding cycling ability of 97.85 % after 10,000 cycles at 10 A g-1. Thus, the NPC prepared in this study can be applied as electrode material for high-performance supercapacitors.
Keywords
melamine foam; nitrogen self-doped porous carbon; supercapacitor; electrode; carbonization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Zheng, X. Zhou, H. Cao, G. Wang and Z. Liu, J. Power Sources, 258, 290 (2014).   DOI
2 B. M. Lee, C. U. Jeong, S. K. Hong, J. M. Yun and J. H. Choi, J. Ind. Eng. Chem., 82, 367 (2020).   DOI
3 L. Miao, D. Zhu, M. Liu, H. Duan, Z. Wang, Y. Lv, W. Xiong, Q. Zhu, L. Li, X. Chai and L. Gan, Electrochim. Acta, 274, 378 (2018).   DOI
4 D. Xue, D. Zhu, W. Xiong, T. Cao, Z. Wang, Y. Lv, Li. Li, M. Liu and Lihua Gan, ACS Sustainable Chem. Eng., 7, 7024 (2019).   DOI
5 K. W. Sung, D. Y. Shin and H. J. Ahn, Korean J. Mater. Res., 29, 623 (2019).   DOI
6 S. Lei, L. Chen, W. Zhou, P. Deng, Y. Liu, L. Fei, W. Lu, Y. Xiao and B. Cheng, J. Power Sources, 379, 74 (2018).   DOI
7 Y. Li, G. Wang, T. Wei, Z. Fan and P. Yan, Nano Energy, 19, 165 (2016).   DOI
8 H. G. Jo, D. Y. Shin and H. J. Ahn, Korean J. Mater. Res., 29, 167 (2019).   DOI
9 Z. Song, H. Duan, D. Zhu, Y. Lv, W. Xiong, T. Cao, L. Li, M. Liu and L. Gan, J. Mater. Chem. A, 7, 15801 (2019).   DOI
10 B. M. Lee, J. J. Eom, G. Y. Baek, S. K. Hong, J. P. Jeun, J. H. Choi and J. M. Yun, Cellulose, 26, 4529 (2019).   DOI
11 Y. Gao, W. Zhang, Q. Yue, B. Gao, Y. Sun, J. Kong and P. Zhao, J. Power Sources, 270, 403 (2014).   DOI
12 K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li and G. Chen, J. Power Sources, 378, 579 (2018).   DOI
13 Y. Zhang, L. Liu, L. Zhang, Y. Yu, H. Lv and A. Chen, J. Mater. Sci., 54, 6451 (2019).   DOI
14 J. Yin, W. Zhang, N. A. Alhebshi, N. Salah and H. N. Alshareef, Small Methods, 4, 1900853 (2020).   DOI
15 L. Miao, D. Zhu, M. Liu, H. Duan, Z. Wang, Y. Lv, W. Xiong, Q. Zhu, L. Li, X. Chai and L. Gan, Chem. Eng. J., 347, 233 (2018).   DOI
16 X. Xin, Z. Wang, R. Jia, C. Gao, L. Sui, H. Dong, J. Feng, S. Ma, B. Pang, Y. Chen, L. Dong and L. Yu, J. Alloys Compd., 822, 153627 (2020).   DOI
17 Y. Wang, Y. Liu, D. Wang, C. Wang, L. Guo and T. Yi, Appl. Surf. Sci., 506, 145014 (2020).   DOI
18 A. Gopalakrishnan and S. Badhulika, J. Power Sources, 480, 228830 (2020).   DOI
19 R. Zhang, X. Jing, Y. Chu, L. Wang, W. Kang, D. Wei, H. Li and S. Xiong, J. Mater. Chem. A, 6, 17730 (2018).   DOI
20 Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng and J. Chen, Adv. Mater., 24, 5610 (2012).   DOI
21 D. K. Kim, N. D. Kim, S. K. Park, K. D. Seong, M. Hwang, N. H. You and Y. Piao, J. Power Sources, 380, 55 (2018).   DOI
22 L. Wan, J. Wang, L. Xie, Y. Sun and K. Li, ACS Appl. Mater. Interfaces, 6, 15583 (2014).   DOI
23 W. Ng, Y. Yang, K. van der Veen, G. Rothenberg and N. Yan, Carbon, 129, 293 (2018).   DOI
24 X. Liu, L. Zhou, Y. Zhao, L. Bian, X. Feng and Q. Pu, ACS Appl. Mater. Interfaces, 5, 10280 (2013).   DOI
25 C. Yuan, X. Liu, M. Jia, Z. Luo and J. Yao, J. Mater. Chem. A, 3, 3409 (2015).   DOI
26 B. M. Lee, J. M. Jung, I. T. Hwang, J. Shin, S. K. Hong, C. H. Jung, Y. G. Jeong and J. H. Choi, Appl. Surf. Sci., 456, 561 (2018).   DOI
27 D. Liu, Q. Li, S. Li, J. Houd and H. Zhao, Nanoscale, 11, 4362 (2019).   DOI
28 M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).   DOI