• 제목/요약/키워드: Super-junction TMOSFET

검색결과 7건 처리시간 0.019초

Electrothermal Analysis for Super-Junction TMOSFET with Temperature Sensor

  • Lho, Young Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • 제37권5호
    • /
    • pp.951-960
    • /
    • 2015
  • For a conventional power metal-oxide-semiconductor field-effect transistor (MOSFET), there is a trade-off between specific on-state resistance and breakdown voltage. To overcome this trade-off, a super-junction trench MOSFET (TMOSFET) structure is suggested; within this structure, the ability to sense the temperature distribution of the TMOSFET is very important since heat is generated in the junction area, thus affecting its reliability. Generally, there are two types of temperature-sensing structures-diode and resistive. In this paper, a diode-type temperature-sensing structure for a TMOSFET is designed for a brushless direct current motor with on-resistance of $96m{\Omega}{\cdot}mm^2$. The temperature distribution for an ultra-low on-resistance power MOSFET has been analyzed for various bonding schemes. The multi-bonding and stripe bonding cases show a maximum temperature that is lower than that for the single-bonding case. It is shown that the metal resistance at the source area is non-negligible and should therefore be considered depending on the application for current driving capability.

Design of Main Body and Edge Termination of 100 V Class Super-junction Trench MOSFET

  • Lho, Young Hwan
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.565-569
    • /
    • 2018
  • For the conventional power MOSFET (metal-oxide semiconductor field-effect transistor) device structure, there exists a tradeoff relationship between specific on-state resistance (Ron,sp) and breakdown voltage (BV). In order to overcome this tradeoff, a super-junction (SJ) trench MOSFET (TMOSFET) structure with uniform or non-uniform doping concentration, which decreases linearly in the vertical direction from the N drift region at the bottom to the channel at the top, for an optimal design is suggested in this paper. The on-state resistance of $0.96m{\Omega}-cm2$ at the SJ TMOSFET is much less than that at the conventional power MOSFET under the same breakdown voltage of 100V. A design methodology for the edge termination is proposed to achieve the same breakdown voltage and on-state resistance as the main body of the super-junction TMOSFET by using of the SILVACO TCAD 2D device simulator, Atlas.

Design of Super-junction TMOSFET with Embedded Temperature Sensor

  • Lho, Young Hwan
    • 전기전자학회논문지
    • /
    • 제19권2호
    • /
    • pp.232-236
    • /
    • 2015
  • Super-junction trench MOSFET (SJ TMOSFET) devices are well known for lower specific on-resistance and high breakdown voltage (BV). For a conventional power MOSFET (metal-oxide semiconductor field-effect transistor) such as trench double-diffused MOSFET (TDMOSFET), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a SJ TMOSFET structure is suggested, but sensing the temperature distribution of TMOSFET is very important in the application since heat is generated in the junction area affecting TMOSFET. In this paper, analyzing the temperature characteristics for different number bonding for SJ TMOSFET with an embedded temperature sensor is carried out after designing the diode temperature sensor at the surface of SJ TMOSFET for the class of 100 V and 100 A for a BLDC motor.

Structure Modeling of 100 V Class Super-junction Trench MOSFET with Specific Low On-resistance

  • Lho, Young Hwan
    • 전기전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.129-134
    • /
    • 2013
  • For the conventional power metal-oxide semiconductor field-effect transistor (MOSFET) device structure, there exists a tradeoff relationship between specific on-resistance ($R_{ON.SP}$) and breakdown voltage ($V_{BR}$). In order to overcome the tradeoff relationship, a uniform super-junction (SJ) trench metal-oxide semiconductor field-effect transistor (TMOSFET) structure is studied and designed. The structure modeling considering doping concentrations is performed, and the distributions at breakdown voltages and the electric fields in a SJ TMOSFET are analyzed. The simulations are successfully optimized by the using of the SILVACO TCAD 2D device simulator, Atlas. In this paper, the specific on-resistance of the SJ TMOSFET is successfully obtained 0.96 $m{\Omega}{\cdot}cm^2$, which is of lesser value than the required one of 1.2 $m{\Omega}{\cdot}cm^2$ at the class of 100 V and 100 A for BLDC motor.

A Study on Temperature Dependent Super-junction Power TMOSFET

  • Lho, Young Hwan
    • 전기전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.163-166
    • /
    • 2016
  • It is important to operate the driving circuit under the optimal condition through precisely sensing the power consumption causing the temperature made mainly by the MOSFET (metal-oxide semiconductor field-effect transistor) when a BLDC (Brushless Direct Current) motor operates. In this letter, a Super-junction (SJ) power TMOSFET (trench metal-oxide semiconductor field-effect transistor) with an ultra-low specific on-resistance of $0.96m{\Omega}{\cdot}cm^2$ under the same break down voltage of 100 V is designed by using of the SILVACO TCAD 2D device simulator, Atlas, while the specific on-resistance of the traditional power MOSFET has tens of $m{\Omega}{\cdot}cm^2$, which makes the higher power consumption. The SPICE simulation for measuring the power distribution of 25 cells for a chip is carried out, in which a unit cell is a SJ Power TMOSFET with resistor arrays. In addition, the power consumption for each unit cell of SJ Power TMOSFET, considering the number, pattern and position of bonding, is computed and the power distribution for an ANSYS model is obtained, and the SJ Power TMOSFET is designed to make the power of the chip distributed uniformly to guarantee it's reliability.

Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance

  • Lho, Young-Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • 제34권1호
    • /
    • pp.134-137
    • /
    • 2012
  • Power metal-oxide semiconductor field-effect transistor (MOSFET) devices are widely used in power electronics applications, such as brushless direct current motors and power modules. For a conventional power MOSFET device such as trench double-diffused MOSFET (TDMOS), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. To overcome the tradeoff relationship, a super-junction (SJ) trench MOSFET (TMOSFET) structure is studied and designed in this letter. The processing conditions are proposed, and studies on the unit cell are performed for optimal design. The structure modeling and the characteristic analyses for doping density, potential distribution, electric field, width, and depth of trench in an SJ TMOSFET are performed and simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the specific on-state resistance of 1.2 $m{\Omega}-cm^2$ at the class of 100 V and 100 A is successfully optimized in the SJ TMOSFET, which has the better performance than TDMOS in design parameters.

비균일 100V 급 초접합 트랜치 MOSFET 최적화 설계 연구 (A Study on Optimal Design of 100 V Class Super-junction Trench MOSFET)

  • 노영환
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.109-114
    • /
    • 2013
  • 전력 MOSFET(산화물-반도체 전위 효과 트랜지스터)는 BLDC 모터와 전력 모듈 등에 광범위하게 사용하고 있다. 기존 전력 MOSFET 구조는 온-저항과 항복전압사이에 절충(tradeoff)이 필요하다. 이러한 절충을 하지 않고 최적화를 하기위해 비균일 초접합 트랜치 MOSFET 를 설계하는데 동일한 항복전압에서 균일 초접합 트랜치 MOSFET보다 낮은 온-저항을 갖도록한다. 이를 위해 드리프트 영역에서 우수한 전기장 분포를 달성하기 위하여 선형구조의 도핑 프로파일을 제안하고, 단위 셀 설계, 도핑농도의 특성분석, 전위분포를 SILVACO TCAD 2D인 Atlas 소자 소프트웨어를 사용하여 시뮬에이션을 수행하였다. 결과로 100V 급 MOSFET에서 비균일 초접합 트랜치 MOSFET가 균일 초접합 트랜치 MOSFET보다 온-저항에서 우수한 특성을 보여주고 있다.