• Title/Summary/Keyword: Sum of Random Variables

Search Result 121, Processing Time 0.029 seconds

Theoretical approach for uncertainty quantification in probabilistic safety assessment using sum of lognormal random variables

  • Song, Gyun Seob;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2084-2093
    • /
    • 2022
  • Probabilistic safety assessment is widely used to quantify the risks of nuclear power plants and their uncertainties. When the lognormal distribution describes the uncertainties of basic events, the uncertainty of the top event in a fault tree is approximated with the sum of lognormal random variables after minimal cutsets are obtained, and rare-event approximation is applied. As handling complicated analytic expressions for the sum of lognormal random variables is challenging, several approximation methods, especially Monte Carlo simulation, are widely used in practice for uncertainty analysis. In this study, a theoretical approach for analyzing the sum of lognormal random variables using an efficient numerical integration method is proposed for uncertainty analysis in probability safety assessments. The change of variables from correlated random variables with a complicated region of integration to independent random variables with a unit hypercube region of integration is applied to obtain an efficient numerical integration. The theoretical advantages of the proposed method over other approximation methods are shown through a benchmark problem. The proposed method provides an accurate and efficient approach to calculate the uncertainty of the top event in probabilistic safety assessment when the uncertainties of basic events are described with lognormal random variables.

Interval prediction on the sum of binary random variables indexed by a graph

  • Park, Seongoh;Hahn, Kyu S.;Lim, Johan;Son, Won
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.261-272
    • /
    • 2019
  • In this paper, we propose a procedure to build a prediction interval of the sum of dependent binary random variables over a graph to account for the dependence among binary variables. Our main interest is to find a prediction interval of the weighted sum of dependent binary random variables indexed by a graph. This problem is motivated by the prediction problem of various elections including Korean National Assembly and US presidential election. Traditional and popular approaches to construct the prediction interval of the seats won by major parties are normal approximation by the CLT and Monte Carlo method by generating many independent Bernoulli random variables assuming that those binary random variables are independent and the success probabilities are known constants. However, in practice, the survey results (also the exit polls) on the election are random and hardly independent to each other. They are more often spatially correlated random variables. To take this into account, we suggest a spatial auto-regressive (AR) model for the surveyed success probabilities, and propose a residual based bootstrap procedure to construct the prediction interval of the sum of the binary outcomes. Finally, we apply the procedure to building the prediction intervals of the number of legislative seats won by each party from the exit poll data in the $19^{th}$ and $20^{th}$ Korea National Assembly elections.

ON PRECISE ASYMPTOTICS IN THE LAW OF LARGE NUMBERS OF ASSOCIATED RANDOM VARIABLES

  • Baek, Jong-Il;Seo, Hye-Young;Lee, Gil-Hwan
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • Let ${X_i{\mid}i{\geq}1}$ be a strictly stationary sequence of associated random variables with mean zero and let ${\sigma}^2=EX_1^2+2\sum\limits_{j=2}^\infty{EX_1}{X_j}$ with 0 < ${\sigma}^2$ < ${\infty}$. Set $S_n={\sum\limits^n_{i=1}^\{X_i}$, the precise asymptotics for ${\varepsilon}^{{\frac{2(r-p)}{2-p}}-1}\sum\limits_{n{\geq}1}n^{{\frac{r}{p}}-{\frac{1}{p}}+{\frac{1}{2}}}P({\mid}S_n{\mid}{\geq}{\varepsilon}n^{{\frac{1}{p}}})$,${\varepsilon}^2\sum\limits_{n{\geq}3}{\frac{1}{nlogn}}p({\mid}Sn{\mid}{\geq}{\varepsilon\sqrt{nloglogn}})$ and ${\varepsilon}^{2{\delta}+2}\sum\limits_{n{\geq}1}{\frac{(loglogn)^{\delta}}{nlogn}}p({\mid}S_n{\mid}{\geq}{\varepsilon\sqrt{nloglogn}})$ as ${\varepsilon}{\searrow}0$ are established under the suitable conditions.

LIMITING BEHAVIOR OF THE MAXIMUM OF THE PARTIAL SUM FOR NEGATIVELY SUPERADDITIVE DEPENDENT RANDOM VARIABLES

  • KIM, HYUN-CHULL
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2015
  • In this paper, some $L_p$-convergences and complete convergences of the maximum of the partial sum for negatively superadditive dependent random variables are obtained. The proofs of the results are based on a new Rosenthal type inequality concerning negatively superadditive dependent random variables.

COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE ASYMPTOTICALLY NEGATIVELY ASSOCIATED RANDOM VARIABLES

  • Kim, Hyun-Chull
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.411-422
    • /
    • 2017
  • Let {$X_{ni}$, $i{\geq}1$, $n{\geq}1$} be an array of rowwise asymptotically negatively associated random variables and {$a_{ni}$, $i{\geq}1$, $n{\geq}1$} an array of constants. Some results concerning complete convergence of weighted sums ${\sum}_{i=1}^{n}a_{ni}X_{ni}$ are obtained. They generalize some previous known results for arrays of rowwise negatively associated random variables to the asymptotically negative association case.

On the Almost Certain Rate of Convergence of Series of Independent Random Variables

  • Nam, Eun-Woo;Andrew Rosalsky
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.91-109
    • /
    • 1995
  • The rate of convergence to a random variable S for an almost certainly convergent series $S_n = \sum^n_{j=1} X_j$ of independent random variables is studied in this paper. More specifically, when $S_n$ converges to S almost certainly, the tail series $T_n = \sum^{\infty}_{j=n} X_j$ is a well-defined sequence of random variable with $T_n \to 0$ a.c. Various sets of conditions are provided so that for a given numerical sequence $0 < b_n = o(1)$, the tail series strong law of large numbers $b^{-1}_n T_n \to 0$ a.c. holds. Moreover, these results are specialized to the case of the weighted i.i.d. random varialbes. Finally, example are provided and an open problem is posed.

  • PDF

THE LIMIT THEOREMS UNDER LOGARITHMIC AVERAGES FOR MIXING RANDOM VARIABLES

  • Zhang, Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.351-358
    • /
    • 2014
  • In this paper, under some suitable integrability and smoothness conditions on f, we establish the central limit theorems for $$\sum_{k{\leq}N}k^{-1}f(S_k/{\sigma}\sqrt{k})$$, where $S_k$ is the partial sums of strictly stationary mixing random variables with $EX_1=0$ and ${\sigma}^2=EX^2_1+2\sum_{k=1}^{\infty}EX_1X_{1+k}$. We also establish an almost sure limit behaviors of the above sums.

ON THE CONVOLUTION OF EXPONENTIAL DISTRIBUTIONS

  • Akkouchi, Mohamed
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.501-510
    • /
    • 2008
  • The distribution of the sum of n independent random variables having exponential distributions with different parameters ${\beta}_i$ ($i=1,2,{\ldots},n$) is given in [2], [3], [4] and [6]. In [1], by using Laplace transform, Jasiulewicz and Kordecki generalized the results obtained by Sen and Balakrishnan in [6] and established a formula for the distribution of this sum without conditions on the parameters ${\beta}_i$. The aim of this note is to present a method to find the distribution of the sum of n independent exponentially distributed random variables with different parameters. Our method can also be used to handle the case when all ${\beta}_i$ are the same.

  • PDF