• Title/Summary/Keyword: Subway stations

Search Result 391, Processing Time 0.027 seconds

Travel Behavior Analysis using Origin-Destination Data for the Subway Line No.7 (수도권 지하철 7호선 주요역 통근통행특성 분석 연구)

  • Han, Sang-Cheon;Lee, Kyung-Chul;Kim, Hwan-Yong;Choi, Young Woo
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.75-83
    • /
    • 2019
  • Recent data development has made it possible to analyze each individual's daily commuting by using transportation card transaction. This research utilizes about 1 million observations from the subway line no.7 of Seoul metropolitan transportation data. By using such a massive dataset, the authors try to identify daily travel behavior of morning commute and its possible relationship between subway usage and socio-economic factors. There are 4 main types of users and their travel behavior, and top 15 stations with the most users for arrival and departure are selected. Accordingly, 15 stations have distinctive characteristics including population density and the number of businesses around stations. To identify this fact, the 4 most populated stations are selected and their socio-economic factors are examined. According to the analysis, the most departure stations are generally surrounded by hihgly populated residential areas, whereas the most arrival stations are stood within the job concentrated districts.

Assessment of Airborne Fungi Concentrations in Subway Stations in Seoul, Korea (서울시 일부 지하철 역사 내 공기 중 진균 농도에 관한 연구)

  • Cho, Jun-Ho;Paik, Nam-Won
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.478-485
    • /
    • 2009
  • This study was performed to assess airborne fungi concentrations during fall in eight subway stations in Seoul, Korea. The purpose of this study was to investigate appropriate culture media and evaluate factors affecting airborne fungi concentrations. Results indicated that airborne fungi concentrations showed log-normal distribution. Thus, geometric mean (GM) and geometric standard deviation (GSD) were calculated. The GM of airborne fungi concentrations cultured on malt extract agar (MEA) media was 466 $cfu/m^3$ (GSD 3.12; Range 113~4,172 $cfu/m^3$) and the GM of concentrations cultured on DG18 media was 242 $cfu/m^3$ (GSD 4.75; Range 49~6,093 $cfu/m^3$). Both of GM values exceeded 150 $cfu/m^3$, the guideline of World Health Organization (WHO). There was no significant difference between two fungi concentrations cultured on MEA and DG18 media, respectively. Two factors, such as relative humidity and depths of subway stations were significantly related to airborne fungi concentrations. It is recommended that special consideration should be given to deeper subway stations for improvement of indoor air quality.

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

A study on Characteristics of Airborne Dusts in Seoul Subway Stations (서울 지하철 내 공기 중 먼지의 특성에 관한 연구)

  • 김진경;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.154-160
    • /
    • 2004
  • The purpose of this study was to evaluate airborne concentrations and characteristics of TSP, IPM, TPM and RPM in Seoul subway stations. Sampling was performed at 14 stations from April 11 to 29, 2002. Size-selective dust concentrations and metal concentrations were measured by gravimetric method and ICP-AES, respectively. The geometric mean of TSP, IPM, TPM and RPM concentrations in Seoul subway stations were 176$\mu\textrm{g}$/㎥, 348$\mu\textrm{g}$/㎥, 158$\mu\textrm{g}$/㎥ and 104$\mu\textrm{g}$/㎥, respectively. Dust concentrations in pathway were the highest and those in lobby were the lowest. The size distribution of dusts was significantly different by location of collection. When the deposition rate into pulmonary gas exchange region was estimated by size distribution, the deposition rate of dust collected from platform was higher than those of dust collected from lobby and pathway. The lower the basement levels were, the higher the deposition rates of dusts into tracheobronchial region and gas exchange region were. Copper and iron concentrations measured in platform higher were than those in other areas.

Analysis on Effect Area of Subway Station Using GIS & Multi-temporal Satellite Images (GIS와 다시기 위성영상을 이용한 전철역세권의 분석)

  • Park, Jae-Kook;Kim, Dong-Moon;Yang, In-Tae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.2
    • /
    • pp.107-115
    • /
    • 2007
  • Among public transportation facilities within urban area, electric railway (subway) has been a regionally based facility that has played an important role in improving the foundation of territory development and arrangement of living foundation and living environment while supplementing the regional road network. In this regard, the subway stations should be allocated in the right place to ensure mobility, convenience and economic feasibility, some of transportation characteristics of road network combined with the subway. However, it would be very hard to evaluate quantitatively the effects of public transportation facilities such as subway in metropolitan cities on regional development and change in land use and to suggest the data that would be utilized in future city planning corresponding to their results. Therefore, this study evaluated the change in land use by the conditions of location of subway stations quantitatively; then, it evaluated and analyzed the change in land use for the internal and external parts of the surrounding areas of subway stations through the GIS spatial analysis and classification of landsat TM satellite image for utilizing it as reference material for the new establishment of subway stations in the future.

Development of the Method Estimating Sections Occurring Intensive PM10 in a Subway Tunnel (For the South Section (Cheongdam~Jangseungbaegi) of Subway Line 7 in Seoul) (지하철 터널의 미세먼지 집중 발생구간 추정방법 개발 (서울 지하철 7호선 남단구간 (청담역~장승배기역) 을 대상으로))

  • Park, Jong-Heon;Park, Jae-Cheol;Eum, Seong-Jik
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.121-131
    • /
    • 2010
  • To effectively reduce PM10 generated in concourses and platforms of subway stations, a research is being conducted to find the PM10 source. The main source of PM10 in subway stations was PM10 generated in the main line tunnels, which was generated in proportion to the frequency of the train operation. Each amount of the PM10 generated when the train was operated once, was constant regardless of the time. On the assumption that the PM10 level in a tunnel of a line is a sum of newly generated amount of dust when the subway passes and the amount carried from the adjacent stations by the wind generated from the subway rolling stocks, the method which estimates the intensive PM10 occurring section was developed and applied to the 12 stations between Cheongdam and Jangseungbaegi in Seoul Subway Line 7.

A Effects of Passenger's Time Saving on Express Subway Systems (급행지하철 도입에 따른 승객통행시간 절감효과에 관한 연구)

  • 김경철;김원호
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.160-171
    • /
    • 1998
  • Express subway system is one of the effective systems adapting to improve service level. Express trains make fewer passenger stop, using a double track or a bypass track, than local trains which served all stations, Express service has been very popular with passengers who travel uninterrupted between terminals, but is has generated some dissatisfaction among passengers who experience longer waiting time on stations. This study aims at proposing the methodology to analyze changes of travel pattern in subway system adapting the express service and to estimate the time saving effects resulting from the installation of the express system. This methodology is evaluated in the fifth line under an assumpt ion that express subway system are adapted. Based on the results of the case study, the following conclusions are made: First, express system reduce a total travel time of 13% or above. Second, shorter headway of express trains increases the time saving effects on subway system. although it requests more waiting time to local train passenger. Third, an installation of Express system to Seoul subway system can augment subway demand in seoul metropolitan area.

  • PDF

A Study on the Sanitation Condition of Public Facility (다중이용시설의 위생상태에 관한 조사연구)

  • Kim, Jong-Oh;Chung, Yong-Taik
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.47-55
    • /
    • 2009
  • Indoor air Quality in public facility same as bus terminal and subway station is very important for civil health. The purpose of this study was to investigate the concentration and distribution of PM10 and falling microorganism at the 5 subway stations and bus terminals from Summer 2003 to Summer 2005 in Kyunggi Province. The results were as follows. 1. The highest concentration of PM10 was $187ug/m^3$ at Bucheon Bus Terminal in 2005 while the lowest concentration of PM10 was $78ug/m^3$ at Suwon Bus Terminal in 2003. The year variation of PM10 concentration at the bus terminals in Kyunggi Province was in order of 2005 > 2004 > 2003. The average concentration of PM10 at the five Bus Terminal was $127ug/m^3$. 2. The highest concentration of PM10 was $225ug/m^3$ at Euijungbu Station l in 2004 while the lowest concentration of PM10 was $115ug/m^3$ at Suwon Station in 2003. The year variation of PM10 at the subway stations in Kyunggi Province was in order of 2004 > 2005 > 2003. The average concentration of PM10 at the five subway stations was $164ug/m^3$. 3. The average amount of falling microoganism at the five bus terminal in Kyunggi Provinc was 201CFU/plate. The minimum is 124 CFU/plate at Seongnam Bus Terminal in 2004 while the maximum is 268CFU/plate at Euijungbu Bus Terminal in summer 2005. The higher concentration of PM10 was 206CFU/plate in 2004 than 199CFU/plate in 2003 and 2005. 4. The minimum is 107CFU/plate at Anyang station in 2003 while the maximum was 263CFU/plate at Euijungbu station in 2003. The average amount of falling microoganism at the five subway stations in Kyunggi Province was 179 CFU/plate. The year variation of falling microorganism at the subway stations in Kyunggi Province was in order of 2004 > 2005 > 2003.

Strategies for Improvement of Air Quality in Subway Stations (지하철 역사의 공기질 개선방안 연구)

  • Cho, Young-Min;Kwon, Soon-Bark;Park, Duck-Shin;Goo, Hye-Young;Bin, Hyung-Gu;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2117-2121
    • /
    • 2010
  • Many passengers complain about the air quality of subway stations, mostly due to the dust. Usually, this dust is usually originated from tunnels, passengers, or outdoor air. As for now, the dust from tunnels and passengers is not easy to control, but relatively easy to control that from outdoor air. In this study, the effect of outdoor air on the subway air quality was investigated, and various factors was found to be effective. Based on these results, some strategies for the improvement of air quality in subway stations were suggested in this study.

  • PDF

A Study on Standardization of the Electric Facilities for distribution & Translations - Focused on the Electric Facilities in Subway Stations - (수변전설비의 표준화에 관한 연구 - 지하철 역사전기설비를 중심으로 -)

  • Cho, Sung-Pil;Kang, Cha-Nyeong;Kim, Hak-Lyun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.838-843
    • /
    • 2006
  • In our modern society, such electric facilities as lighting, elevators, water supplies, drainages, waste water treatments and landscape lighting are being more enlarged, diversified and technology-intensive owing to outstanding technological development, while they require reliable and safe electricity. On the other hand, as more electric energy is consumed with more complicated systems operated, any accident from a personal electric system is likely to have wider spreading effects. In particular, the electric receivers and transformers installed for such public facilities as subway stations require highest safety, reliability and economy, but such requirements tend to be less considered than such financial requirements as budget conditions, much less their safety and reliability. In such a circumstance, this study was aimed at suggesting some standards for safe, reliable and economic subway electric systems in terms of their scale, location and uses. Specifically, this study put forwards the ways to optimize and standardize the electric systems including receivers and transformers for subway stations in order to make them safer, more reliable and economic.

  • PDF