• Title/Summary/Keyword: Substructuring Method

Search Result 82, Processing Time 0.024 seconds

Pseudodynamic testing method (유사동적 실험기법)

  • 이동근;김남식
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.12-17
    • /
    • 1992
  • 지진하중에 대한 내진성능을 평가하기 위하여 유사동적 실험기법은 다양한 시험체를 대상으로 응용되어 왔다. 특히 실물크기의 시험체에 대한 실험이 가능하다는 특징 때문에 substructuring기법을 도입하여 부분구조물에 대한 유사동적실험이 활발히 진행되고 있으며, substructuring기법에 사용되는 수치적분 알고리즘의 효율성 및 새로운 보완이 필요한 것으로 판단된다. 근래에 구조물의 진동제어(vibration control)를 목적으롤 개발된 rubber bearing, viscous damper 등은 두드러진 감쇠특성을 갖고 있는 장치로서 strain-rate 효과에 비교적 민감하다. 지금까지의 유사동적실험을 준정적으로 실험이 수행되었으나, 이러한 장치가 설치된 구조물의 진동제어 성능실험을 위해서는 가능한 실시간(real time)에 가까운 실험 진행속도를 갖는 것이 유리하다. 최근에 Nakashima는 digital servomechanism을 이용하여 실시간에 가까운 실험속도의 유사동적 실험을 수행하였으며, 이에 대한 지속적인 연구를 진행하고 있다.

  • PDF

Ultimate response of bionics shells

  • Tesar, Alexander;Minar, Michal
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.135-150
    • /
    • 2002
  • Numerical analysis of ultimate behaviour of thin bionics shells is treated in present paper. Interactive conditions in resonance and stability ultimate response are considered. Numerical treatment of nonlinear problems appearing is made using the updated Lagrangian formulation of motion. Each step of the iteration approaches the solution of linear problem and the feasibility of parallel processing FETM-technique with adaptive mesh refinement and substructuring for the analysis of ultimate action of thin bionics shells is established. Some numerical results are submitted in order to demonstrate the efficiency of the procedures suggested.

An efficient modeling technique for floor vibration in multi-story buildings

  • Lee, Dong-Guen;Ahn, Sang-Kyoung;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.603-619
    • /
    • 2000
  • Analysis of a framed structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic responses. This paper presents an efficient modeling technique for vertical vibration utilizing substructuring technique and super elements. To simplify the modeling procedure each floor in a structure is modeled as a substructure. Only the vertical translational degrees of freedom are selected as master degrees of freedom in the inside of each substructure. At the substructure-column interface, horizontal and rotational degrees of freedom are also included considering the compatibility condition of slabs and columns. For further simplification, the repeated parts in a substructure are modeled as super elements, which reduces computation time required for the construction of system matrices in a substructure. Finally, the Guyan reduction technique is applied to enhance the efficiency of dynamic analysis. In numerical examples, the efficiency and accuracy of the proposed method are demonstrated by comparing the response time histories and the analysis time.

The Development of a finite-Element Modelling and Component Mode Synthesis Method for High-Speed railway Passenger Cars (고속전철 객차를 위한 유한요소모델링 및 모드합성기법의 개발)

  • 장경진;김홍준;이상민;박영필
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.233-240
    • /
    • 1998
  • In the design of the high-speed railway vehicles of low noise and vibration characteristics, it is desirable to develop efficient and systematic procedures for analyzing large structures. In this paper, some finite-element modelling techniques and an efficient analytical method are proposed for this purpose. The analytical method is based on substructuring approach such as a free-interface method and a generalized synthesis algorithm. In final, the proposed approaches are applied to the finite-element modelling, modal analysis and subsequent model updating procedures of the high-speed railway intermediate trailers.

  • PDF

Seismic Response Analysis of a Large Scale Soil-Structure Interaction Test Structure on Flexible Site (유연지반상 대형내진시험구조물의 지진응답해석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.257-264
    • /
    • 1997
  • Seismic responses of the Hualien large scale seismic test model on a layered soil site are estimated for two recorded earthquakes and the analysis results are then compared and evaluated with the recorded responses. The method adopted for the analysis is based on substructuring method using a lumped parameter model in both the frequency and time domain. the study results indicate that the proposed method can reasonably estimate the earthquake responses of a soil-structure interaction system for engineering purposes.

  • PDF

Degree-of-Freedom-Based Reduction Method for Modal Analysis of Repeated Structure (반복 구조물의 모드 해석을 위한 효과적인 자유도 기반 축소 기법)

  • Choi, Geomji;Chang, Seongmin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.71-75
    • /
    • 2021
  • Despite the development of computational resources, the need to analyze models is increasing. The size of model has been increased to analyze the entire structure more accurately and precisely. As the analysis model becomes larger and more complex, the computation time increases exponentially. Various industries use many structures that have repeated patterns. We focus on these structures with repeated patterns and propose a dynamic analysis method to efficiently calculate these repeated structures. To devise an efficient method for repeated structures, the substructuring scheme and the degree of freedom-based reduction method are used in this study. We modify the existing reduction method in consideration of the characteristics of the repeating structure. In the proposed method, the entire structure was expressed as a combination of substructures, where each substructure was represented as an unit cell of repeated structures. The substructures were condensed and assembled using the substructuring scheme and the modified condensation method. Finally, numerical examples were demonstrated to verify the efficiency and accuracy of proposed method.

MULTIGRID METHODS FOR 3D H(curl) PROBLEMS WITH NONOVERLAPPING DOMAIN DECOMPOSITION SMOOTHERS

  • Duk-Soon Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.659-681
    • /
    • 2024
  • We propose V-cycle multigrid methods for vector field problems arising from the lowest order hexahedral Nédélec finite element. Since the conventional scalar smoothing techniques do not work well for the problems, a new type of smoothing method is necessary. We introduce new smoothers based on substructuring with nonoverlapping domain decomposition methods. We provide the convergence analysis and numerical experiments that support our theory.

System Target Propagation to Model Order Reduction of a Beam Structure Using Genetic Algorithm (유전자 알고리즘을 이용한 시스템 최적 부분구조화)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • In many engineering problems, the dynamic substructuring can be useful to analyze complex structures which made with many substructures, such as aircrafts and automotive vehicles. It was originally intended as a method to simplify the engineering problem. The powerful advantage to this is that computational efficiency dramatically increases with eliminating unnecessary degrees-of-freedom of the system and the system targets are concurrently satisfied. Craig-Bampton method has been widely used for the linear system reduction. Recently, multi-level optimization (such as target cascading), which propagates the system-level targets to the subsystem-level targets, has been widely utilized. To this concept, the genetic algorithm which one of the global optimization technique has been utilized to the substructure optimization. The number of internal modes for each substructure can be obtained by the genetic algorithm. Simultaneously, the reduced system meets the top-level targets. In this paper, various numerical examples are tested to verify this concept.

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.

Global Sensitivity Analysis of Joints for Plug-in Digital Framework (플러그인 디지털 프레임웍을 위한 연결부 전역민감도 해석)

  • Lee, Dooho;Won, Young-Woo;Kwon, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Plug-In Digital Framework is a system response analysis tool that is employed when system components are composed of black-box modules. Generally, the dynamic characteristics of joints between the system components significantly affect system responses, and they lead to displacement- and frequency-dependent stiffness and loss factor. Thus, the sensitivity of each joint parameters should be estimated from a global perspective. In this study, we introduce a global sensitivity analysis procedure under the Plug-In Digital Framework. To efficiently calculate the system responses, we introduce the frequency response function (FRF)-based substructuring method. Using the random balance designs (RBD), we generate the system responses and estimate the global first-order sensitivities for each joint stiffness. We apply the proposed global sensitivity analysis method to an interior noise problem of a passenger car, and we evaluate the efficiency of the global sensitivity analysis method.