DOI QR코드

DOI QR Code

MULTIGRID METHODS FOR 3D H(curl) PROBLEMS WITH NONOVERLAPPING DOMAIN DECOMPOSITION SMOOTHERS

  • Duk-Soon Oh (Department of Mathematics Chungnam National University)
  • Received : 2023.01.31
  • Accepted : 2024.04.05
  • Published : 2024.07.01

Abstract

We propose V-cycle multigrid methods for vector field problems arising from the lowest order hexahedral Nédélec finite element. Since the conventional scalar smoothing techniques do not work well for the problems, a new type of smoothing method is necessary. We introduce new smoothers based on substructuring with nonoverlapping domain decomposition methods. We provide the convergence analysis and numerical experiments that support our theory.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and S. Zampini, MFEM: A modular finite element library, Comput. Math. Appl. 81 (2021), 42-74. https://doi.org/10.1016/j.camwa.2020.06.009
  2. D. N. Arnold, R. S. Falk, and R. Winther, Preconditioning in H(div) and applications, Math. Comp. 66 (1997), no. 219, 957-984. http://dx.doi.org/10.1090/S0025-5718-97-00826-0
  3. D. N. Arnold, R. S. Falk, and R. Winther, Multigrid preconditioning in H(div) on non-convex polygons, Comput. Appl. Math. 17 (1998), no. 3, 303-315.
  4. D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in H(div) and H(curl), Numer. Math. 85 (2000), no. 2, 197-217. http://dx.doi.org/10.1007/PL00005386
  5. A. Bossavit, Discretization of electromagnetic problems: the "generalized finite differences" approach, Handb. Numer. Anal., XIII, North-Holland, Amsterdam, 2005, pp. 105-197.
  6. J. H. Bramble and J. E. Pasciak, New convergence estimates for multigrid algorithms, Math. Comp. 49 (1987), no. 180, 311-329. http://dx.doi.org/10.2307/2008314
  7. S. C. Brenner and D.-S. Oh, Multigrid methods for H(div) in three dimensions with nonoverlapping domain decomposition smoothers, Numer. Linear Algebra Appl. 25 (2018), no. 5, e2191, 14. https://doi.org/10.1002/nla.2191
  8. S. C. Brenner and D.-S. Oh, A smoother based on nonoverlapping domain decomposition methods for H(div) problems: a numerical study, Domain decomposition methods in science and engineering XXIV, Lect. Notes Comput. Sci. Eng., vol. 125, Springer, Cham, 2018, pp. 523-531. https://doi.org/10.1007/978-3-319-93873-8_50
  9. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, third ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. http://dx.doi.org/10.1007/978-0-387-75934-0
  10. P. D. Brubeck and P. E. Farrell, Multigrid solvers for the de Rham complex with optimal complexity in polynomial degree, 2022, arXiv:2211.14284. https://doi.org/10.48550/ARXIV.2211.14284
  11. J. G. Calvo, A two-level overlapping Schwarz method for H(curl) in two dimensions with irregular subdomains, Electron. Trans. Numer. Anal. 44 (2015), 497-521.
  12. J. G. Calvo, A new coarse space for overlapping Schwarz algorithms for H(curl) problems in three dimensions with irregular subdomains, Numer. Algorithms 83 (2020), no. 3, 885-899. https://doi.org/10.1007/s11075-019-00707-9
  13. C. R. Dohrmann and O. B. Widlund, A BDDC algorithm with deluxe scaling for three-dimensional H(curl) problems, Comm. Pure Appl. Math. 69 (2016), no. 4, 745-770. https://doi.org/10.1002/cpa.21574
  14. W. Hackbusch, Multi-Grid Methods and Applications, Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. http://dx.doi.org/10.1007/978-3-662-02427-0
  15. R. Hiptmair, Multigrid method for H(div) in three dimensions, Electron. Trans. Numer. Anal. 6 (1997), no. Dec., 133-152, Special issue on multilevel methods (Copper Mountain, CO, 1997).
  16. R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal. 36 (1998), no. 1, 204-225. https://doi.org/10.1137/S0036142997326203
  17. R. Hiptmair and C. Pechstein, A review of regular decompositions of vector fields: continuous, discrete, and structure-preserving, Spectral and high order methods for partial differential equations-ICOSAHOM 2018, Lect. Notes Comput. Sci. Eng., vol. 134, Springer, Cham, 2020, pp. 45-60.
  18. R. Hiptmair and A. Toselli, Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions, Parallel solution of partial differential equations (Minneapolis, MN, 1997), IMA Vol. Math. Appl., vol. 120, Springer, New York, 2000, pp. 181-208.
  19. R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal. 45 (2007), no. 6, 2483-2509. https://doi.org/10.1137/060660588
  20. Q. Hu, Convergence of the Hiptmair-Xu preconditioner for Maxwell's equations with jump coefficients (I) : extensions of the regular decomposition, SIAM J. Numer. Anal. 59 (2021), no. 5, 2500-2535. https://doi.org/10.1137/20M1320365
  21. Q. Hu and J. Zou, A nonoverlapping domain decomposition method for Maxwell's equations in three dimensions, SIAM J. Numer. Anal. 41 (2003), no. 5, 1682-1708. https://doi.org/10.1137/S0036142901396909
  22. T. V. Kolev and P. S. Vassilevski, Parallel auxiliary space AMG for H(curl) problems, J. Comput. Math. 27 (2009), no. 5, 604-623. https://doi.org/10.4208/jcm.2009.27.5.013
  23. Y.-J. Lee, J. Wu, J. Xu, and L. Zikatanov, Robust subspace correction methods for nearly singular systems, Math. Models Methods Appl. Sci. 17 (2007), no. 11, 1937-1963. https://doi.org/10.1142/S0218202507002522
  24. S. F. McCormick, Multigrid Methods, Frontiers in Applied Mathematics, vol. 3, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1987. http://dx.doi.org/10.1137/1.9781611971057
  25. MFEM: Modular finite element methods [Software], https://mfem.org/.
  26. P. B. Monk, A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal. 28 (1991), no. 6, 1610-1634. https://doi.org/10.1137/0728081
  27. P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447 https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
  28. J. C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980), no. 3, 315-341. https://doi.org/10.1007/BF01396415
  29. D.-S. Oh, Smoothers based on nonoverlapping domain decomposition methods for H(curl) problems: A numerical study, J. Korean Soc. Ind. Appl. Math. 26 (2022), no. 4, 323-332. https://doi.org/10.12941/jksiam.2022.26.323
  30. A. Toselli, Overlapping Schwarz methods for Maxwell's equations in three dimensions, Numer. Math. 86 (2000), no. 4, 733-752. https://doi.org/10.1007/PL00005417
  31. A. Toselli, Dual-primal FETI algorithms for edge finite-element approximations in 3D, IMA J. Numer. Anal. 26 (2006), no. 1, 96-130. https://doi.org/10.1093/imanum/dri023
  32. S. Zampini, Adaptive BDDC deluxe methods for H(curl), Domain Decomposition Methods in Science and Engineering XXIII, Lect. Notes Comput. Sci. Eng., vol. 116, Springer, Cham, 2017, pp. 285-292. https://doi.org/10.1007/978-3-319-52389-7_29
  33. S. Zampini, P. Vassilevski, V. Dobrev, and T. Kolev, Balancing domain decomposition by constraints algorithms for curl-conforming spaces of arbitrary order, Domain Decomposition Methods in Science and Engineering XXIV, Lect. Notes Comput. Sci. Eng., vol. 125, Springer, Cham, 2018, pp. 103-116. https://doi.org/10.1007/978-3-319-93873-8_8
  34. L. T. Zikatanov, Two-sided bounds on the convergence rate of two-level methods, Numer. Linear Algebra Appl. 15 (2008), no. 5, 439-454. https://doi.org/10.1002/nla.556