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MULTIGRID METHODS FOR 3D H(curl) PROBLEMS WITH

NONOVERLAPPING DOMAIN DECOMPOSITION

SMOOTHERS

Duk-Soon Oh

Abstract. We propose V–cycle multigrid methods for vector field prob-
lems arising from the lowest order hexahedral Nédélec finite element.

Since the conventional scalar smoothing techniques do not work well for

the problems, a new type of smoothing method is necessary. We introduce
new smoothers based on substructuring with nonoverlapping domain de-

composition methods. We provide the convergence analysis and numerical
experiments that support our theory.

1. Introduction

In this paper, the following boundary value problem in three dimensions will
be considered:

(1)
Lu := curl (α curl u) + u = f in Ω,

n× (u× n) = 0 on ∂Ω.

Here, Ω is a bounded convex hexahedral domain in three dimensions whose
edges are parallel to the coordinate axes and n is the outward unit normal
vector of its boundary. We assume that the coefficient α is a strictly positive

constant and f is in
(
L2(Ω)

)3
.

Our model problem (1) is posed in the Hilbert space H0(curl; Ω), the sub-
space of H(curl; Ω) with zero tangential components on the boundary ∂Ω.
Here, the space H(curl; Ω) is defined by

(2) H(curl; Ω) =
{
u ∈

(
L2(Ω)

)3
: curlu ∈

(
L2(Ω)

)3}
.

Applying integration by parts, the corresponding variational problem for (1)
can be obtained as follows: Find u ∈ H0(curl; Ω) such that

(3) a(u,v) = (f ,v) ∀v ∈ H0(curl; Ω),
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where

(4)

a(w,v) := α

∫
Ω

curl w · curl v dx+

∫
Ω

w · v dx,

(f ,v) :=

∫
Ω

f · v dx.

We will also define the following bilinear forms for any subdomain D ⊂ Ω by:

(5) aD(w,v) := α

∫
D

curl w · curl v dx+

∫
D

w · v dx

and

(6) (w,v)D =

∫
D

w · v dx.

The problem (1) is motivated by the eddy-current problem of Maxwell’s
equation; see [5, 26]. Specifically, time-dependent Maxwell’s equations satisfy
the following system:

ϵ
∂

∂t
E + σE − curl H = J in Ω× [0, T ](7)

µ
∂

∂t
H + curl E = 0 in Ω× [0, T ],(8)

where E is the electric field, H is the magnetic field and J is the intrinsic
current. Eliminating H and employing an implicit method yield the following
equation in each time step:

(9)
1

4
∆t2curl

(
1

µ
curl En

)
+

(
ϵ+

1

2
σ∆t

)
En = R.H.S. in Ω.

The problem (9) is equivalent to our model problem (1). Hence, efficient nu-
merical methods for (1) are essential for solving time-dependent Maxwell’s
equations. There have been a number of attempts for designing fast solvers re-
lated to multigrid methods or domain decomposition methods for the problem
(1). For more details, see [4, 11–13,16,18,19,21–23,30–33].

Not like the elliptic problems posed in the H1 Hilbert space, multigrid
methods for vector field problems posed in H(div) or H(curl) are challeng-
ing. This is because conventional smoothers designed for H1 related problems,
e.g., point-wise smoothers, are not performing well for vector field problems;
see [34]. The structures of the null spaces of the differential operators make
the hurdle. For the gradient operator, the kernel consists of all constants.
However, all gradient fields and all curl fields are the null spaces of the curl
and the divergence operators, respectively. Thus, a special treatment for han-
dling the kernels is essential when building multigrid solvers for vector field
problems. There have been several approaches in order to overcome the diffi-
culties. In [15,16], Hiptmair suggested function space splitting methods based
on Helmholtz type decompositions. In the algorithms in [15, 16], the smooth-
ing steps have been applied to the decomposed spaces separately, i.e, the range
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space and the null space. Later, Hiptmair and Xu developed nodal auxiliary
space preconditioning techniques based on a new type of regular decomposition
in [19]. In [2–4], smoothing methods based on geometric substructures have
been proposed. Overlapping types of domain decomposition preconditioners
have been applied to vector fields successfully. Another class of methods re-
lated to nonoverlapping substructure has been considered for H(div) problems
by the author and Brenner in [7, 8]. In [10], the authors suggested multigrid
methods based on both overlapping and nonoverlapping methods for higher
order finite elements.

In this paper, we suggest V–cycle multigrid methods for H(curl) vector field
problems (1) with smoothers based on nonoverlapping domain decomposition
preconditioners. We note that our approaches are H(curl) counterparts of the
methods in [7, 8] and nonoverlapping alternatives of the method in [4], which
reduce the computational complexity when applying the smoothers.

The rest of this paper is organized as follows. We introduce the edge finite
elements for our model problem and the discretized problem in Section 2. The
V–cycle multigrid algorithms are presented in Section 3. In Section 4, we
provide the convergence analysis for the suggested methods. The numerical
experiments which support our theory are presented in Section 5, followed by
concluding remarks in Section 6.

2. Finite element discretization

We introduce a hexahedral triangulation Th of the domain Ω. The edge
finite element space, also known as Nédélec finite element space of the lowest
order, is defined by

(10) Nh := {u : u|T ∈ ND(T ), T ∈ Th and u ∈ H(curl; Ω)} ,

where

(11) ND(T ) :=

a1 + a2x2 + a3x3 + a4x2x3
b1 + b2x3 + b3x1 + b4x3x1
c1 + c2x1 + c3x2 + c4x1x2


on each element with twelve constants {ai}, {bi} and {ci}, i = 1, 2, 3, 4; see
[27, 28] for more details. We note that on each hexahedral element T , the
tangential components of vector fields of the form (11) are constants on the
twelve edges of T . The twelve coefficients are completely determined by the
average tangential components, which is obtained by

(12) λe (v) :=
1

|e|

∫
e

v · te ds,

on the twelve edges. Here, e is one of the twelve edges of T , |e| is the length
of e, and te is the unit tangential vector along the edge e. The standard basis
function for Nh associated with e is denoted by ϕe. We note that λe(ϕe) = 1
and λe′(ϕe) = 0 for e′ ̸= e.
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Applying the finite element method with Nh, the discrete problem for (3) is
given by the following form: Find uh ∈ Nh such that

(13) a(uh,v) = (f ,v) ∀v ∈ Nh.

The operator Ah : Nh −→ N ′
h is defined by

(14) ⟨Ahwh,vh⟩ = a(wh,vh) ∀vh,wh ∈ Nh,

where ⟨·, ·⟩ is the canonical bilinear form on N ′
h ×Nh. We also define fh ∈ N ′

h

in the following way:

(15) ⟨fh,vh⟩ = (f ,vh) ∀vh ∈ Nh.

Then, the discrete problem (13) can be written as

(16) Ahuh = fh.

3. Multigrid algorithms

3.1. Triangulations and grid transfer operators

We introduce T0, an initial triangulation of the domain Ω. The triangulations
T1, T2, . . . are obtained from the initial triangulation T0 by uniform refinement
with the relation hk = hk−1/2, where hk is the mesh size of Tk. The lowest
order Nédélec space associated with Tk is denoted by Nk. Then, we can rewrite
the corresponding k−th level discrete problem as

(17) Akuk = fk.

In order to design V–cycle multigrid methods for solving (17), two essential
ingredients, i.e., intergrid transfer operators and smoothers, have to be defined
properly. We first focus on the grid transfer operators. Due to the fact that
the finite element spaces are nested, we can use the natural injection to define
the coarse-to-fine operator Ikk−1 : Nk−1 −→ Nk. The associated fine-to-coarse

operator Ik−1
k : N ′

k −→ N ′
k−1 can be defined by

(18) ⟨Ik−1
k ℓ,v⟩ = ⟨ℓ, Ikk−1v⟩ ∀ ℓ ∈ N ′

k, v ∈ Nk−1.

3.2. Smoothers

We now concentrate on the other ingredient, smoothers. Nonoverlapping
type domain decomposition methods will be used to construct the smoothers.
In order to keep consistency with the notations for the standard two-level
domain decomposition methods, we will denote Tk−1 by TH and Tk by Th.
It means that all the coarse level and fine level settings are associated with
Tk−1(= TH) and Tk(= Th), respectively. We also define geometric substruc-
tures. We will use FH , EH , and VH to denote the sets of interior faces, edges,
and vertices of TH , respectively. We also define ED

h for any subdomain D ⊂ Ω
by the set of interior edges associated with Th that are parts of D. Similarly,
we define VD

h by the set of interior vertices related to Th that are contained in
D.
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We first introduce the interior space. For each element T ∈ TH , we define
the following subspace NT

h of Nh:

(19) NT
h = {v ∈ Nh : v = 0 on Ω \ T}.

We next denote by JT the natural injection from NT
h into Nh and we define

the operator AT : NT
h −→ (NT

h )′ by

(20) ⟨ATw,v⟩ = a(w,v) ∀v,w ∈ NT
h .

In the rest of this subsection, we will introduce two types of smoothing tech-
niques, edge-based and vertex-based smoothers.

3.2.1. Edge-based smoothers. We first consider an edge-based smoother. For
a given edge E ∈ EH , we can find four elements,

{
T i
E

}
i=1,2,3,4

in TH , and four

faces,
{
F i
E

}
i=1,2,3,4

in FH , that are sharing the edge E. We define the edge

space NE
h of Nh by

(21)

NE
h =

{
v ∈ Nh : v · te = 0

for e ∈ EΩ
h

∖((
∪4
i=1E

T i
E

h

)⋃(
∪4
j=1E

F j
E

h

)⋃
EE
h

)
,

and a(v,w) = 0 ∀w ∈
(
N

T 1
E

h +N
T 2
E

h +N
T 3
E

h +N
T 4
E

h

)}
.

We remark that due to (21), if v ∈ NE
h and w have the same tangential

components as v on the edges associated with ∂T i
E , i = 1, 2, 3, 4, we have the

following property:

(22) aT i
E
(v,v) ≤ aT i

E
(w,w) , i = 1, 2, 3, 4.

The operator JE : NE
h −→ Nh is defined as the natural injection. We next

define the operator AE : NE
h −→

(
NE

h

)′
by

(23) ⟨AEw,v⟩ = a(w,v) ∀v,w ∈ NE
h .

The edge-based smoothing operator M−1
E,h is constructed as follows:

(24) M−1
E,h = ηE

( ∑
T∈TH

JTA
−1
T J t

T +
∑

E∈EH

JEA
−1
E J t

E

)
,

where ηE is a damping factor and J t
T : N ′

h −→
(
NT

h

)′
and J t

E : N ′
h −→

(
NE

h

)′
are the transposes of JT and JE , respectively. We can choose the damping
factor ηE such that the spectral radius of M−1

E,hAh ≤ 1. We note that by
using the fact that each fine edge is shared by at most 12 substructures and
a standard coloring argument, the condition is satisfied if ηE ≤ 1/12, which is
assumed to be the case from now on.
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3.2.2. Vertex-based smoothers. We now consider a vertex-based method. In
order to define the vertex space NV

h , we need geometric substructures associ-
ated with the given coarse vertex V ∈ VH . For each V ∈ VH , there are eight
elements,

{
T i
V

}
i=1,...,8

in TH , twelve faces,
{
F i
V

}
i=1,...,12

in FH , and six edges,{
Ei

V

}
i=1,...,6

in EH , that have the vertex V in common. The vertex space NV
h

is defined by

(25)

NV
h =

{
v ∈ Nh : v · te = 0

for e ∈ EΩ
h \

((
∪8
i=1E

T i
V

h

)⋃(
∪12
j=1E

F j
V

h

)⋃(
∪6
l=1E

El
V

h

))
,

and a(v,w) = 0 ∀w ∈

(
8∑

i=1

N
T i
V

h

)}
.

Note that (25) implies the following minimum energy property:

(26) aT i
V
(v,v) ≤ aT i

V
(w,w) , i = 1, . . . , 8,

for v ∈ NV
h and w ∈ Nh with the same degrees of freedom as v on ∂T i

V , i =
1, . . . , 8.

The vertex-based preconditioner is given by

(27) M−1
V,h = ηV

( ∑
T∈TH

JTA
−1
T J t

T +
∑

V ∈VH

JVA
−1
V J t

V

)
.

Here, ηV is a damping factor and JV , J
t
V , and AV are defined in a similar

way to those in the edge-based method. The operator JV : NV
h −→ Nh is the

natural injection and J t
V : N ′

h −→
(
NV

h

)′
is the transpose of JV . We define

AV : NV
h →

(
NV

h

)′
as follows:

(28) ⟨AV w,v⟩ = a(w,v) ∀v,w ∈ NV
h .

We note that if ηV ≤ 1/8, the spectral radius ofM−1
V,hAh ≤ 1 by using a similar

argument to that of the edge-based method and we will use the condition for
the rest of this paper.

3.3. V–cycle multigrid algorithm

Combining all together, we now construct the symmetric V–cycle multigrid
algorithm. Let MG(k, g, z0,m) be the output of the k−th level symmetric
multigrid algorithm for solving Akz = g with initial guess z0 ∈ Nk and m
smoothing steps. The algorithm is defined in Figure 1.

The smoothing operator M−1
k will be either M−1

E,k or M−1
V,k. We note that

given ℓ ∈ N ′
k, the cost of computing M−1

k ℓ is O(nk) for both edge-based and
vertex-based smoothers, where nk is the number of degrees of freedom of Nk.
Hence, the overall computational complexity forMG(k, g, z0,m) is also O(nk).
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For k = 0,
MG (0, g, z0,m) = A−1

0 g.

For k ≥ 1, we set

zl = zl−1 +M−1
k (g −Akzl−1) for 1 ≤ l ≤ m,

g = Ik−1
k (g −Akzm) ,

zm+1 = zm + Ikk−1MG (k − 1, g, 0,m) ,

zl = zl−1 +M−1
k (g −Akzl−1) for m+ 2 ≤ l ≤ 2m+ 1.

The output of MG (k, g, z0,m) is z2m+1.

Figure 1. V–cycle Multigrid Method

4. Convergence analysis

Firstly, we remark that the authors in [23] suggested a sufficient condition,
assumption (A1), for the convergence of the multigrid methods for problems
have large null space. However, the kernel splitting condition does not hold for
the smoothers constructed in Section 3.2. This is because the restriction of a
gradient field to the edge spaceNE

h or the vertex spaceNV
h is no longer curl-free.

This fact makes the convergence analysis for our suggested multigrid methods
challenging. We rephrase the assumption for our methods in Assumption 4.1.

Assumption 4.1 (Assumption (A1) of [23]). Let Kh be the kernel of the curl
operator and GH correspond EH or VH . The decomposition

Nh =
∑

T∈TH

NT
h +

∑
G∈GH

NG
h

satisfies

Kh =
∑

T∈TH

(
NT

h ∩Kh

)
+
∑

G∈GH

(
NG

h ∩Kh

)
.

In another word, Assumption 4.1 implies that any element in Kh can be de-
composed into a sum of elements in

(
NT

h ∩Kh

)
and

(
NG

h ∩Kh

)
.

We define operators that are useful for our analysis. The projection operator
PH is defined by the Ritz projection from the fine level space Nh to the coarse
level space NH with respect to the bilinear form a(·, ·) and the identity operator
on Nh is denoted by I.

We will also need the Lagrange finite element space of order one, Wh for
our analysis. The degree of freedoms are chosen as the function evaluations at
vertex points v ∈ Vh and are denoted by νv(p) := p(v). The standard basis
function associated with the vertex v is denoted by ψv, i.e., νv(ψv) = 1 and
νv′(ψv) = 0 for v′ ̸= v.
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4.1. Stability estimates

The next lemmas, which are useful for the stability in the edge space, can
be obtained by direct calculations.

Lemma 4.2. For a given coarse edge E ∈ EH , which is parallel to the x1 axis,
there are four elements T i

E ∈ TH , i = 1, 2, 3, 4 sharing E. Let v be the midpoint
of E. Then, there are six fine edges ei ∈ Eh, i = 1, . . . , 6, having v in common
as an endpoint, such that e2i−1 and e2i are parallel to the xi axis for i = 1, 2, 3,
and let us fix the directions for the tangential vectors, txi

, i = 1, 2, 3, for all
corresponding fine edges. Without loss of generality, let v be the endpoint of
e1, e3, and e5 with respect to the given tangential directions. We construct
u ∈ Nh supported in

⋃4
i=1 T

i
E by the properties that

• u · txi
= −1 on e2i−1 and u · txi

= 1 on e2i for i = 1, 2, 3.

• On the other edges in
⋃4

i=1 E
∂T i

E

h , the tangential component of u van-
ishes.

• u is orthogonal to N
T i
E

h with respect to the innerproduct (·, ·)T i
E

for

i = 1, 2, 3, 4.

Then, curlu does not vanish.

Proof. It suffices to prove the argument on the edge E = (0, 1) and the refer-

ence cube T̂ (:= T 1
E) = (0, 1)3. The general case can be done with a suitable

scaling and symmetry. The fine edges ei, i = 1, . . . , 6 are defined in the lemma
statement. The interior fine edges eI,j , j = 1, . . . , 6 associated with the mid-

point of T̂ , [1/2, 1/2, 1/2], can be defined in a similar way. We note that only

e1, e2, e4, and e6 are associated with ∂T̂ and the degrees of freedom on the

other fine edges on ∂T̂ vanish. By a direct calculation, we obtain the following
linear system:

(29)
2

9
I6×6

 uI,1
...

uI,6

+



1

72
0 0 0

0
1

72
0 0

0 0
1

18
0

0 0 0 0

0 0 0
1

18
0 0 0 0




u1
u2
u4
u6

 =

 0
...
0

 ,

where I6×6 is the six by six identity matrix, uI,j , j = 1, . . . , 6 are the degrees of
freedom related to the interior fine edges eI,j , j = 1, . . . , 6, respectively. Here,
from the construction, [u1, u2, u4, u6]

t = [−1, 1, 1, 1]t. The solution of (29) is
given by [1/16,−1/16,−1/4, 0,−1/4, 0]t. Hence, by a direct calculation, we
can find

(30) ∥curlu∥2L2(T̂ ) =
17

24
> 0. □
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Lemma 4.3. For a given vertex V ∈ VH , there are eight elements T i
V ∈

TH , i = 1, . . . , 8, sharing V . Also, there are six fine edges ei ∈ Eh, i = 1, . . . , 6,
having V in common as endpoint, such that e2i−1 and e2i are parallel to the
xi axis for i = 1, 2, 3, and let us fix the directions for the tangential vectors,
txi
, i = 1, 2, 3, for all corresponding fine edges. Without loss of generality, let V

be the endpoint of e1, e3, and e5 with respect to the given tangential directions.
We construct u ∈ Nh supported in

⋃8
i=1 T

i
V by the properties that

• u · txi
= −1 on e2i−1 and u · txi

= 1 on e2i for i = 1, 2, 3.

• On the other edges in
⋃8

i=1 E
∂T i

V

h , the tangential component of u van-
ishes.

• u is orthogonal to N
T i
V

h with respect to the innerproduct (·, ·)T i
V

for

i = 1, . . . , 8.

Then, curlu does not vanish.

Proof. In a similar way to the proof of Lemma 4.2, we consider the argument

for V = (0, 0, 0) and T̂ (:= T 1
V ). The same approach with that of Lemma 4.2

gives

(31)
2

9
I6×6

 uI,1
...

uI,6

+



1

72
0 0

0 0 0

0
1

72
0

0 0 0

0 0
1

72
0 0 0



 u2
u4
u6

 =

 0
...
0

 ,

where [u2, u4, u6]
t = [1, 1, 1]t. From the result, [−1/16, 0,−1/16, 0,−1/16, 0]t,

of (31) and a direct calculation, we have

(32) ∥curlu∥2L2(T̂ ) =
1

32
> 0. □

In [4, Proposition 4.4], Arnold, Falk, and Winther suggested the following
discrete orthogonal Helmholtz decomposition that plays an essential role in the
analysis.

Lemma 4.4. [Discrete Helmholtz decomposition] For any w ∈ (I − PH)Nh,
there exist r ∈ Nh and q ∈Wh such that

(33) w = r +∇ q,

and

∥r∥2L2(Ω) + ∥∇ q∥2L2(Ω) = ∥w∥2L2(Ω) ,(34)

α ∥r∥2L2(Ω) ≤ CH2a (w,w) ,(35)

∥q∥2L2(Ω) ≤ CH2 ∥w∥2L2(Ω) ,(36)
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where the positive constant C does not depend on the mesh size h.

The edge-based smoother has the following stable decomposition result:

Lemma 4.5. For any w ∈ (I − PH)Nh, there exist a constant CE,† that does
not depend on α, h and the number of elements in TH and a decomposition

w =
∑

T∈TH

wT +
∑

E∈EH

wE ,

such that

(37)
∑

T∈TH

a (wT ,wT ) +
∑

E∈EH

a (wE ,wE) ≤ CE,†a (w,w) .

Proof. For given w ∈ (I − Ph)Nh, we consider the decomposition (33) in
Lemma 4.4, i.e., w = r +∇ q.

For each coarse edge E ∈ EH , we have four coarse faces F i
E ∈ FH , i = 1, 2, 3, 4

and four elements T i
E ∈ TH , i = 1, 2, 3, 4, that are sharing E. We denote by

NF i
E

the number of edges in EH that are parts of ∂F i
E . We now construct

rE ∈ NE
h in the following way:

(38) rE · te =


1

NF i
E

r · te for e ∈ EF i
E

h , i = 1, 2, 3, 4,

r · te for e ∈ EE
h ,

and (21). Then, r and
∑

E⊂EH
rE have identical degrees of freedom on the

edges contained in the boundaries of elements in TH . Thus, we can find rT ∈
NT

h such that

(39) r =
∑

T∈TH

rT +
∑

E∈EH

rE .

Let g = ∇ q. We construct gE in exactly the same way with rE . Now that
g and

∑
E∈EH

gE have the same degrees of freedom on the edges of NH , we
have

(40) g =
∑

T∈TH

gT +
∑

E∈EH

gE

for unique vector fields gT ∈ NT
h .

Term rT : We first consider the vector fields associated with the interior
spaces NT

h . We note that the interior spaces are orthogonal to all the edge
spaces NE

h with respect to the bilinear form a(·, ·). Also, the interior spaces
are mutually orthogonal. Thus, we have the following estimate putting together
with (34), (35), and a standard inverse inequality:∑

T∈TH

a (rT , rT ) = a

( ∑
T∈TH

rT ,
∑

T∈TH

rT

)
≤ a(r, r)
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=
∑

T∈TH

[
α ∥curl r∥2L2(T ) + ∥r∥2L2(T )

]
(41)

≤
∑

T∈TH

[
C
α

h2
∥r∥2L2(T ) + ∥r∥2L2(T )

]
≤ Ca(w,w).

Term rE : We next consider the vector fields associated with edges. For
any E ∈ EH , we construct r̃E,F in the following way:

(42) r̃E =
∑
e∈M

λe(rE)ϕe,

where M =
(
∪4
i=1E

F i
E

h

)
∪ EE

h . From (22) and a scaling argument, we obtain

(43) a(rE , rE) ≤ a(r̃E , r̃E)

and

(44) ∥r̃E∥L2(T i
E) ≤ C ∥r∥L2(T i

E) , i = 1, 2, 3, 4.

Using (34), (35), (43), (44), and an inverse inequality, we obtain

(45)

∑
E∈EH

a(rE , rE) ≤
∑

E∈EH

a(r̃E , r̃E)

=
∑

E∈EH

4∑
i=1

[
α ∥curl r̃E∥2L2(T i

E) + ∥r̃E∥2L2(T i
E)

]

≤ C
∑

E∈EH

4∑
i=1

[ α
h2

∥r∥2L2(T i
E) + ∥r∥2L2(T i

E)

]
≤ Ca(w,w).

We therefore have by (41) and (45)

(46)
∑

T∈TH

a(rT , rT ) +
∑

E∈EH

a(rE , rE) ≤ Ca(w,w).

Term gT : The orthogonal properties and (34) imply the estimate∑
T∈TH

a (gT , gT ) = a

( ∑
T∈TH

gT ,
∑

T∈TH

gT

)
≤ a(g, g) = ∥∇q∥2L2(Ω) ≤ ∥w∥2L2(Ω) ≤ a(w,w).(47)

Term gE : For a scalar function z, we define zv for v ∈ Vh by

(48) zv := νv(z)ψv.

For a given E ∈ EH , let vE ∈ Vh be the midpoint of E. Similarly, we denote
by vF ∈ Vh the midpoint of F ∈ FH . We also consider RE defined by the set
of all fine edges that share vE , the midpoint of E.
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For each E ∈ EH , we construct g̃
(1)
E ∈ Nh and g̃

(2)
E ∈ NE

h . The vector field

g̃
(1)
E is defined by

(49) g̃
(1)
E = ∇

(
qvE +

4∑
i=1

1

NF i
E

qv
Fi
E

)
.

For e ∈ EF i
E

h \ RE , let E
i
e ∈ E∂F i

E\E
H be the coarse edge that shares one vertex

point with e. Then, g̃
(2),e
E ∈ NE

h is defined by

(50) g̃
(2),e
E · te = ∇

(
1

NF i
E

qvEi
e

)
· te for e,

(51) g̃
(2),e
E · te′ = 0 for e′ ̸= e and e′ ∈ EF i

E

h \RE , i = 1, 2, 3, 4,

and (21). For V ∈ V∂E
H , we construct g̃

(2),V
E ∈ NE

h as follows:

(52) g̃
(2),V
E · te =

{
∇qV · te for e,

0 for e′ ∈ EE
h and e′ ̸= e,

and (21), where e ∈ EE
h and V is one of the endpoint of e.

We then construct g̃
(2)
E as follows:

(53) g̃
(2)
E =

 4∑
i=1

∑
e∈E

Fi
E

h \RE

g̃
(2),e
E

+

 ∑
V ∈V∂E

H

g̃
(2),V
E

 .

We note that g̃
(1)
E + g̃

(2)
E and gE have the same degrees of freedom on the edges

in (∪4
j=1E

F j
E

h )
⋃
EE
h .

We first estimate g̃
(1)
E . By a standard inverse inequality and a scaling argu-

ment, we obtain

(54)
∥∥∥g̃(1)

E

∥∥∥2
L2(T i

E)
≤ C

h2
∥q∥2L2(T i

E) , i = 1, 2, 3, 4.

Hence, from (36), and (54) we have

(55)
∑

E∈EH

a(g̃
(1)
E , g̃

(1)
E ) ≤ C

h2
∥q∥2L2(Ω) ≤ C ∥w∥2L2(Ω) ≤ Ca(w,w).

We next consider g̃
(2)
E . For each vEi

e
, there exist six fine edges {ej}, j =

1, . . . , 6 in Eh that have vEi
e
in common. We define ĝ

(2),e
E ∈ NE

h as follows:

(56) ĝ
(2),e
E · te′ = ∇

(
1

NF i
E

qvEi
e

)
· te′ , for e′ = ej , j = 1, . . . , 6
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and (21). We compare g̃
(2),e
E and ĝ

(2),e
E . Let {T j

Ei
e
}, j = 1, 2, 3, 4 be four ele-

ments in TH , that are sharing Ei
e. Because∥∥∥ĝ(2),e
E

∥∥∥
L2(T j

Ei
e
)
= 0

if and only if g̃
(2),e
E = 0, we obtain

(57)
∥∥∥g̃(2),e

E

∥∥∥
L2(T j

Ei
e
)
≤ C

∥∥∥ĝ(2),e
E

∥∥∥
L2(T j

Ei
e
)
, j = 1, 2, 3, 4.

Furthermore, it follows from Lemma 4.2 that curl ĝ
(2),e
E = 0 if and only if

g̃
(2),e
E = 0. Thus, we have, by a scaling argument again,

(58)
∥∥∥curl g̃(2),e

E

∥∥∥
L2(T j

Ei
e
)
≤ C

∥∥∥curl ĝ(2),e
E

∥∥∥
L2(T j

Ei
e
)
, j = 1, 2, 3, 4.

Additionally, the construction of ĝ
(2),e
E , (22), a scaling argument, and an inverse

estimate give the estimate

(59) aT j

Ei
e

(ĝ
(2),e
E , ĝ

(2),e
E ) ≤ C

h2
∥q∥2L2(T j

Ei
e
) , j = 1, 2, 3, 4.

For each V ∈ V∂E
H , there are six edges in Eh sharing V in common. We can

then construct ĝ
(2),V
E ∈ NE

h in an exactly same way with ĝ
(2),e
E . Combining

Lemma 4.3 and a similar scaling argument to that of g̃
(2),e
E and ĝ

(2),e
E , we obtain

(60)
∥∥∥g̃(2),V

E

∥∥∥
L2(T j

V )
≤ C

∥∥∥ĝ(2),V
E

∥∥∥
L2(T j

V )
, j = 1, . . . , 8

and

(61)
∥∥∥curl g̃(2),V

E

∥∥∥
L2(T j

V )
≤ C

∥∥∥curl ĝ(2),V
E

∥∥∥
L2(T j

V )
, j = 1, . . . , 8,

where {T j
V }, j = 1, . . . , 8, are the eight elements in TH sharing V in common.

We then have

(62) aT j
V
(ĝ

(2),V
E , ĝ

(2),V
E ) ≤ C

h2
∥q∥2L2(T j

V ) , j = 1, . . . , 8.

By summing over all E ∈ EH , i, and e ∈ EF i
E

h and by (53), (57), (58), (59),
(60), (61), (62), and Cauchy-Schwarz inequality, we have

(63)

∑
E∈EH

a
(
g̃
(2)
E , g̃

(2)
E

)
≤ C

∑
E∈EH

4∑
i=1

∑
e∈E

Fi
E

h \RE

a
(
g̃
(2),e
E , g̃

(2),e
E

)

+ C
∑

E∈EH

∑
V ∈V∂E

H

a
(
g̃
(2),V
E , g̃

(2),V
E

)
≤ C

h2
∥q∥2L2(Ω) ≤ C ∥w∥2L2(Ω) ≤ Ca(w,w).
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Putting all together with (22), (55), (63), and Cauchy-Schwarz inequality, we
obtain

(64)
∑

E∈EH

a(gE , gE) ≤ Ca(w,w).

With wT = rT + gT and wE = rE + gE , we have the estimate (37) by (46),
(47), and (64). □

The following lemma shows a stability estimate for the vertex-based method:

Lemma 4.6. For any w ∈ (I − PH)Nh, we can find a decomposition

w =
∑

T∈TH

wT +
∑

V ∈VH

wV

and a constant CV,† that does not depend on α, h and the number of elements
in TH , such that

(65)
∑

T∈TH

a (wT ,wT ) +
∑

V ∈VH

a (wV ,wV ) ≤ CV,†a (w,w) .

Proof. We will consider two terms r and ∇ q in (33) separately as in the ap-
proach for Lemma 4.5. For each V ∈ VH , we consider the geometric struc-
tures

{
T i
V

}
i=1,...,8

in TH , twelve faces,
{
F i
V

}
i=1,...,12

in FH , and six edges,{
Ei

V

}
i=1,...,6

in EH , considered in Section 3.2.2. The numbers NF i
V

and NEj
V

are denoted by the numbers of vertices in VH that are parts of ∂F i
V and ∂Ej

V ,
respectively. We now construct rV ∈ NV

h in the following way:

(66) rV · te =


1

NF i
V

r · te for e ∈ EF i
V

h , i = 1, . . . , 12,

1

NEj
V

r · te for e ∈ EEj
V

h , i = 1, . . . , 6,

and (25). We note that r −
∑

V ∈VH
rV belongs to

∑
T∈TH

NT
h since r and∑

V ∈VH
rV have the same degrees of freedom on the edges contained in ∂T, T ∈

TH . Hence, we have the following decomposition:

(67) r =
∑

T∈TH

rT +
∑

V ∈VH

rV .

Using the same arguments in (41), we have

(68)
∑

T∈TH

a(rT , rT ) ≤ Ca(w,w).

Let r̃V be defined by

(69) r̃V :=

12∑
i=1

∑
e∈E

Fi
V

h

λe(rV )ϕe +

6∑
j=1

∑
e∈E

E
j
V

h

λe(rV )ϕe.
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We then have

(70) a(rV , rV ) ≤ a(r̃V , r̃V )

and

(71) ∥r̃V ∥L2(T i
V ) ≤ C ∥r∥L2(T i

V ) , i = 1, . . . , 8,

by (26) and a standard scaling argument. Combining (34), (35), (70), (71),
and an inverse estimate, we obtain

(72)

∑
V ∈VH

a (rV , rV ) ≤
∑

V ∈VH

a(r̃V , r̃V )

=
∑

V ∈VH

8∑
i=1

[
α ∥curl r̃V ∥2L2(T i

V ) + ∥r̃V ∥2L2(T i
V )

]

≤
∑

V ∈VH

8∑
i=1

C
[ α
h2

∥r̃V ∥2L2(T i
V ) + ∥r̃V ∥2L2(T i

V )

]

≤
∑

V ∈VH

8∑
i=1

C
[ α
h2

∥r∥2L2(T i
V ) + ∥r∥2L2(T i

V )

]
≤ Ca(w,w).

Together with (68) and (72), we have

(73)
∑

T∈TH

a(rT , rT ) +
∑

V ∈VH

a (rV , rV ) ≤ Ca(w,w).

Next, we consider g = ∇ q.
Let g̃V be defined by

(74)

g̃V := ∇

νV (q)ψV +

12∑
i=1

∑
v∈V

Fi
V

h

1

NF i
V

νv(q)ψv +

6∑
j=1

∑
v∈V

E
j
V

h

1

NEj
V

νv(q)ψv

 .

Using a standard inverse estimate and a scaling argument, we obtain

(75) ∥g̃V ∥2L2(T ) ≤
C

h2
∥q∥2L2(T ) ∀T ∈ TH .

We then construct gV ∈ NV
h so that

(76) gV · te = g̃V · te for e ∈

(
12⋃
i=1

EF i
V

h

)⋃ 6⋃
j=1

EEj
V

h

 .

Now that g and
∑

V ∈VH
gV have the identical degrees of freedom on the edges

in
⋃

T∈TH
E∂T
h , we have

(77) g =
∑

T∈TH

gT +
∑

V ∈VH

gV
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for unique vector fields gT ∈ NT
h . For gT , approach with (47) to obtain

(78)
∑

T∈TH

a(gT , gT ) ≤ Ca(w,w).

By the construction of gV and (26), we obtain

(79) a(gV , gV ) ≤ a(g̃V , g̃V ) =

8∑
i=1

∥g̃V ∥2L2(T i
V ) .

Moreover, we have the following estimate using (36), (75), and (79):

(80)
∑

V ∈VH

a(gV , gV ) ≤
C

h2
∥q∥2L2(Ω) ≤ C ∥w∥2L2(Ω) ≤ Ca(w,w).

From (78) and (80), we therefore have

(81)
∑

T∈TH

a(gT , gT ) +
∑

V ∈VH

a (gV , gV ) ≤ Ca(w,w).

With wT = rT + gT and wV = rV + gV , we obtain the desired estimate (65)
from (73) and (81). □

4.2. Convergence analysis of the V–cycle multigrid algorithms

We now consider the convergence analysis for the V–cycle multigrid. The
error propagation operator Ek : Nk −→ Nk for the V–cycle multigrid methods
with m smoothing steps is given by
(82)

Ek =

{
0 if k = 0,

Rm
k

(
Idk − Ikk−1P

k−1
k

)
Rm

k +Rm
k

(
Ikk−1Ek−1P

k−1
k

)
Rm

k if k ≥ 1;

see [14,24]. Here, Ikk−1 is defined in Section 3.1 and the operator P k−1
k : Nk −→

Nk−1 is the Ritz projection operator defined by

(83) a
(
P k−1
k w,v

)
= a

(
w, Ikk−1v

)
∀w ∈ Nk, v ∈ Nk−1.

Moreover, we define Rk : Nk −→ Nk by

(84) Rk = Idk −M−1
k Ak,

where Idk is the identity operator on Nk.

Remark 4.7. The operator Rk in (84) is symmetric with respect to the inner
product a(·, ·) and Ek is symmetric positive semidefinite with respect to a(·, ·).
For more detail, see Chapter 6 of [9].

We will follow the framework in Bramble and Pasciak [6]. We can also refer
to Chapter 6 of [9]. We note that the spectral conditions in Section 3.2.1 and
Section 3.2.2 and stability estimates in Lemma 4.5 and Lemma 4.6 play main
roles in the framework.

We first consider a smoothing property.
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Lemma 4.8. For m ≥ 1, we have

a ((Idk −Rk)R
m
k v, Rm

k v) ≤ 1

2m
a
((
Idk −R2m

k

)
v,v

)
∀v ∈ Nk, k ≥ 1.

Proof. Let v ∈ Nk be arbitrary. Since Rk is symmetric with respect to the
inner product a(·, ·), it follows from the spectral conditions in Section 3.2.1
and Section 3.2.2 and the spectral theorem that

a
(
(Idk −Rk)R

l
kv,v

)
≤ a

(
(Idk −Rk)R

j
kv,v

)
for 0 ≤ j ≤ l,

and thus we have

(2m)a ((Idk −Rk)R
m
k v, Rm

k v) = (2m)a
(
(Idk −Rk)R

2m
k v,v

)
≤

2m−1∑
j=0

a
(
(Idk −Rk)R

j
kv,v

)
= a

((
Idk −R2m

k

)
v,v

)
. □

We next derive two approximation properties.

Lemma 4.9. For all v ∈ Nk and k ≥ 1, let w =
(
Idk − Ikk−1P

k−1
k

)
v. We

then have the following estimates:

⟨ME,kw,w⟩ ≤ CE,†

ηE
a (w,w)

and

⟨MV,kw,w⟩ ≤ CV,†

ηV
a (w,w) .

Proof. We will use a well-know additive Schwarz theory. For more details, see
Chapter 7 of [9]. For any w ∈ Nh, we have

⟨ME,kw,w⟩

= η−1
E inf

w=
∑

T∈TH
wT

+
∑

E∈EH
wE ,

wT∈NT
h ,wE∈NE

h

( ∑
T∈TH

a (wT ,wT ) +
∑

E∈EH

a (wE ,wE)

)
.(85)

We therefore have the estimate for ME,k from Lemma 4.5 and (85) with w =(
Idk − Ikk−1P

k−1
k

)
v.

Similarly, for any w ∈ Nh, the following relation holds:

⟨MV,kw,w⟩

= η−1
V inf

w=
∑

T∈TH
wT

+
∑

V ∈VH
wV ,

wT∈NT
h ,wV ∈NV

h

( ∑
T∈TH

a (wT ,wT ) +
∑

V ∈VH

a (wV ,wV )

)
.(86)

In a similar way, we obtain the estimate for MV,k from Lemma 4.6 and (86)

with w =
(
Idk − Ikk−1P

k−1
k

)
v. □
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Lemma 4.10. For all v ∈ Nk, k ≥ 1, we have

a
((
Idk − Ikk−1P

k−1
k

)
v,
(
Idk − Ikk−1P

k−1
k

)
v
)
≤ C†

η
a ((Idk −Rk)v,v)) ,

where C† = CE,† (resp. CV,†) and η = ηE (resp. ηV ) if Mk = ME,k (resp.
MV,k).

Proof. Let w =
(
Idk − Ikk−1P

k−1
k

)
v. By (83), Lemma 4.9 and the Cauchy-

Schwarz inequality, we have

a(w,w) = a(w,v) =
〈
Mk

(
M−1

k

)
Akv,w

〉
≤
〈
Mk

(
M−1

k Ak

)
v,
(
M−1

k Ak

)
v
〉1/2 ⟨Mkw,w⟩1/2

≤ a
((
M−1

k Ak

)
v,v

)1/2(C†

η

)1/2

a(w,w)1/2

= a ((Idk −Rk)v,v)
1/2

(
C†

η

)1/2

a(w,w)1/2.

Hence, we obtain

(87) a(
(
Idk − Ikk−1P

k−1
k

)
v,
(
Idk − Ikk−1P

k−1
k

)
v) ≤ C†

η
a ((Idk −Rk)v,v) .□

Finally, we establish our main result, the uniform convergence of the V–cycle
multigrid methods.

Theorem 4.11. Let ∥ · ∥a =
√
a(·, ·). We then have

∥Ekw∥a ≤ (C†/η)

(C†/η) + 2m
∥w∥a ∀w ∈ Nk, k ≥ 1,

where C† = CE,† (resp. CV,†) and η = ηE (resp. ηV ) if Mk = ME,k (resp.
MV,k).

Proof. Due to the fact that Ek is symmetric positive semidefinite, it is enough
to show that

(88) a(Ekw,w) ≤ C∗

C∗ + 2m
a(w,w) ∀w ∈ Vk, k ≥ 1,

where C∗ = C†/η.
We will prove (88) by induction. Obviously, the case for k = 0 holds auto-

matically since E0 = 0. Let δ = C∗/(C∗ + 2m) and assume that the estimate
(88) is satisfied for k − 1. We then have

a (Ekw,w) = a
(
Rm

k

(
Idk − Ikk−1P

k−1
k + Ikk−1Ek−1P

k−1
k

)
Rm

k w,w
)

≤ a
((
Idk − Ikk−1P

k−1
k

)
Rm

k w,
(
Idk − Ikk−1P

k−1
k

)
Rm

k w
)

+ δa
(
P k−1
k Rm

k w, P k−1
k Rm

k w
)

= (1− δ) a
((
Idk − Ikk−1P

k−1
k

)
Rm

k w,
(
Idk − Ikk−1P

k−1
k

)
Rm

k w
)
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+ δa (Rm
k w, Rm

k w)

≤ (1− δ)C∗a ((Idk −Rk)R
m
k w, Rm

k w) + δa (Rm
k w, Rm

k w)

≤ (1− δ)
C∗

2m
a
((
Idk −R2m

k

)
w,w

)
+ δa (Rm

k w, Rm
k w)

= δa (w,w)

from the induction hypothesis, (82), (83), Lemma 4.8 and Lemma 4.10. □

5. Numerical experiments

In this section, we report the numerical results that support the theoretical
estimates and demonstrate the performance of the V–cycle multigrid methods.
We use the computational domain Ω = (−1, 1)3. As the initial triangulation
T0, we use eight identical unit cubes.

In the first set of experiments, we carry out the k−th level multigrid algo-
rithm with the edge-based smoother introduced in Section 3.2 with m smooth-
ing steps and the damping factor ηE = 1/13. We compute the contraction
numbers for k = 1, . . . , 4 and m = 1, . . . , 5. We perform the experiments five
times with the coefficient α = 0.01, 0.1, 1.0, 10.0, 100.0. The results are re-
ported in Table 1. As we see the result, the V–cycle multigrid methods provide
uniform convergence.

We next perform similar experiments to the first set of experiments. The
only differences are the smoother, the vertex-based smoother, and the damping
factor ηV = 1/9. Other general settings are identical. The contraction numbers
are reported in Table 2. The results are compatible with our theory and the
uniform convergence of the methods is observed.

In the last round of experiments, we perform numerical tests to compare the
computation times of multigrid methods with the nonoverlapping smoothers
suggested in this paper and the overlapping smoother proposed in [4]. In each
experiment, we consider the multigrid methods as iterative solvers and check
the elapsed CPU time in seconds and the iteration counts. We use the param-
eters k = 4, α = 1.0, m = 1, . . . , 5, and the tolerance 10−5 for the stopping
criterion, a relative reduction of the ℓ2−norm. All tests were conducted on a
desktop system equipped with an Intel Core i9 3.6GHz CPU. The results are
presented in Table 3. As we see the results, the vertex-based method outper-
forms in terms of total CPU elapsed time, although it takes longer time in one
multigrid sweep than any other methods. The edge-based method has the least
elapsed time per one iteration and a total time comparable to the overlapping
method, but 1.17 times faster on average.

We note that a part of implementations is based on the MFEM library;
see [1, 25] for more details. The implemented codes are available at https:

//github.com/duksoon-open/MG_ND.

https://github.com/duksoon-open/MG_ND
https://github.com/duksoon-open/MG_ND


678 D.-S. OH

Table 1. Edge-Based Methods

m = 1 m = 2 m = 3 m = 4 m = 5

α = 0.01

k = 1 7.88E-01 6.27E-01 4.44E-01 3.25E-01 3.11E-01
k = 2 8.81E-01 7.79E-01 6.99E-01 5.90E-01 5.62E-01
k = 3 9.24E-01 8.56E-01 7.92E-01 7.36E-01 6.77E-01
k = 4 9.40E-01 8.90E-01 8.41E-01 7.98E-01 7.56E-01

α = 0.1

k = 1 8.83E-01 7.85E-01 7.03E-01 6.33E-01 5.73E-01
k = 2 9.30E-01 8.70E-01 8.18E-01 7.55E-01 7.25E-01
k = 3 9.53E-01 9.19E-01 8.88E-01 8.52E-01 8.19E-01
k = 4 9.72E-01 9.53E-01 9.35E-01 9.18E-01 9.01E-01

α = 1.0

k = 1 9.07E-01 8.31E-01 7.69E-01 7.19E-01 6.77E-01
k = 2 9.44E-01 9.17E-01 8.85E-01 8.58E-01 8.30E-01
k = 3 9.70E-01 9.59E-01 9.44E-01 9.30E-01 9.17E-01
k = 4 9.81E-01 9.72E-01 9.65E-01 9.63E-01 9.56E-01

α = 10.0

k = 1 9.09E-01 8.36E-01 7.77E-01 7.30E-01 6.91E-01
k = 2 9.49E-01 9.25E-01 8.97E-01 8.74E-01 8.55E-01
k = 3 9.72E-01 9.65E-01 9.53E-01 9.42E-01 9.33E-01
k = 4 9.82E-01 9.76E-01 9.73E-01 9.71E-01 9.66E-01

α = 100.0

k = 1 9.10E-01 8.37E-01 7.78E-01 7.31E-01 6.93E-01
k = 2 9.49E-01 9.26E-01 8.98E-01 8.76E-01 8.57E-01
k = 3 9.73E-01 9.66E-01 9.54E-01 9.43E-01 9.34E-01
k = 4 9.82E-01 9.76E-01 9.73E-01 9.72E-01 9.67E-01

Table 2. Vertex-Based Methods

m = 1 m = 2 m = 3 m = 4 m = 5

α = 0.01

k = 1 7.90E-01 6.24E-01 4.93E-01 3.90E-01 3.08E-01
k = 2 7.91E-01 6.26E-01 4.94E-01 3.92E-01 3.12E-01
k = 3 7.90E-01 6.24E-01 4.93E-01 3.90E-01 3.08E-01
k = 4 7.90E-01 6.25E-01 4.94E-01 3.91E-01 3.09E-01

α = 0.1

k = 1 7.90E-01 6.24E-01 4.93E-01 3.90E-01 3.08E-01
k = 2 7.91E-01 6.25E-01 4.94E-01 3.91E-01 3.10E-01
k = 3 7.91E-01 6.26E-01 4.95E-01 3.91E-01 3.10E-01
k = 4 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.11E-01

α = 1.0

k = 1 7.90E-01 6.24E-01 4.93E-01 3.90E-01 3.08E-01
k = 2 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.10E-01
k = 3 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.11E-01
k = 4 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.11E-01

α = 10.0

k = 1 7.90E-01 6.24E-01 4.93E-01 3.90E-01 3.08E-01
k = 2 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.10E-01
k = 3 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.11E-01
k = 4 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.11E-01

α = 100.0

k = 1 7.90E-01 6.24E-01 4.93E-01 3.90E-01 3.08E-01
k = 2 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.10E-01
k = 3 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.11E-01
k = 4 7.91E-01 6.26E-01 4.95E-01 3.92E-01 3.11E-01
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Table 3. CPU time (in seconds), iteration counts, and aver-
age CPU time per iteration (in seconds) for multigrid methods
based on edge-based, vertex-based, and overlapping smoothers

m = 1 m = 2 m = 3 m = 4 m = 5

edge-based
total time 148.83 145.71 160.81 165.90 185.11

iters 389 204 149 118 105
time per iter 0.383 0.714 1.079 1.406 1.763

vertex-based
total time 39.71 38.43 40.67 40.57 42.20

iters 45 22 15 11 9
time per iter 0.882 1.747 2.711 3.688 4.689

overlapping
total time 188.12 188.76 186.55 191.07 187.60

iters 264 132 88 66 52
time per iter 0.713 1.430 2.120 2.895 3.608

6. Concluding remarks

In this work, new multigrid methods based on nonoverlapping domain de-
composition smoothers for vector field problems posed in H(curl) have been
developed and analyzed. The suggested methods provide uniform convergence
and the numerical experiments are consistent with the theoretical results. We
note that it is possible to extend our results to problems with nonhomogeneous
boundary conditions with only minor changes.

There are a few challenges. In our convergence analysis, we assumed that
the coefficients are constants and the domain is convex. The numerical results
in [29] show that the V–cycle multigrid methods work well without the assump-
tions, i.e. constant coefficients and convex domain. Our theory can therefore
be extended to coefficients with jumps or nonconvex domains. We believe that
the results in [17, 20] would be good ingredients for establishing the stronger
convergence analysis. We are also interested in the extension of our results
with the use of the tetrahedral Nédélec finite element of the lowest order in
order to handle more general convex polyhedral domains.

Acknowledgement. This work was supported by research fund of Chungnam
National University.
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