• Title/Summary/Keyword: Substructure Synthesis Method

Search Result 88, Processing Time 0.025 seconds

Clarification about Component Mode Synthesis Methods for Substructures with Physical Flexible Interfaces

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • The objective of the paper is to clarify a methodology based on the use of the existing component mode synthesis methods for the case of two damped substructures which are coupled through a linking viscoelastic flexible substructure and for which the structural modes with free geometrical interface are used for each main substructure. The proposed methodology corresponds to a convenient alternative to the direct use either of the Craig-Bampton method applied to the three substructures (using the fixed geometric interface modes) or of the flexibility residual approaches initiated by MacNeal (using the free geometric interface modes). In opposite to a geometrical interface which is a topological interface on which there is a direct linkage between the degrees of freedom of substructures, we consider a physical flexible interface which exists in certain present technologies and for which the general framework linear viscoelasticity is used and yields a frequency-dependent damping and stiffness matrices of the physical flexible interface.

An Enhancement of Transfer Function Synthesis by Improving the Leakage Error of FRF (FRF 누설오차 개선에 의한 전달함수 합성법의 향상)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Kim, Seung-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.354.2-354
    • /
    • 2002
  • The frequency response function(FRF) of each substructure is used in the transfer function synthesis method(TFS). The dynamic characteristics of an entire system are obtained by synthesizing results of substructures. The accuracy of TFS will depend on that of FRF of each substructure. The impact hammer testing is widely used to obtain the modal characteristics of substructures. (omitted)

  • PDF

A Model Reduction Method for Effective Analysis of Structures (구조물의 효율적인 해석을 위한 모델 축소기법 연구)

  • Park, Young-Chang;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2006
  • Substructure coupling or component mode synthesis may be employed in the solution of dynamic problems for large, flexible structures. The model is partitioned into several subdomains, and a generalized Craig-Bampton representation is derived. In this paper the mode sets (normal modes, constraint modes) is employed for model reduction. A generalized model reduction procedure is described. Vaious reduction methods that use constraint modes is described in detail. As examples, a flexible structure and a 10 DOF damped system are analyzed. Comparison with a conventional reduction method based on a complete model is made via eigenpair and dynamic responses.

  • PDF

Structural Dynamic Analysis using Multi-FRF Synthesis Method (다중전달 함수합성법을 이용한 구조물의 동특성 해석)

  • 정재훈;지태한;박영필
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.139-145
    • /
    • 1998
  • A great deal of effort has been invested in upgrading the performance and the efficiency of dynamic analysis of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, the performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircrafts, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure are widely used. Through linking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned strucutres can be proposed. In this study, a new algorithm of substructre synthesis method, Multi-FRF synthesis method, is proposed to analyze a structure composed of many substructures.

  • PDF

A Study on the estimation of an equivalent system of a local vibration system of a huge structure and the Optimum Structural Modification Method (거대 구조물의 국부진동계의 등가계 산출과 이를 이용한 최적구조변경법)

  • 박석주;황문주;오창근;김성우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.04a
    • /
    • pp.120-127
    • /
    • 1998
  • It is very difficult to execute the vibration analysis of a huge strucutre, which takes up much time and expense. In this paper we intend to make the equivalent system of a local vibration system of a huge structure with a view to improving the dynamic characteristics and reducing time and expense. First of all, upper deck structure model is maded. And we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the upper deck structure model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. To make the equivalent system, we give boundary condition to sub-structure that want to be modified and execute the Sensitivity Analysis Method and the Optimum Structural Modification Method. And we execute the structural modification of the equivalent system.. The following can be found from this study. 1. The analytical results are generally coincident with each other. 2. The equivalent system of the superstructure model can be easily obtained using the sensitivity analysis metho and the optimum structural modification method. 3. The structural modification using the equivalent system can be obtained good results above 90% of object value.

  • PDF

A Study on Model Reduction for Effective Analysis of Structure (구조물의 효율적인 해석을 위한 모델 축소기법 연구)

  • 박영창;황재혁;오화석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1370-1375
    • /
    • 2001
  • Substructure coupling or component mode synthesis may be employed in the solution of dynamic problems for structure. The model is partitioned into several subdomains. and a generalized Craig-Bampton representation is derived. In this paper the mode sets(normal modes. constraint modes) have been employed for model reduction. A generalized model reduction procedure has been described. Those reduction methods which adapt constraint modes have been described in detail. As examples. a flexible structure and a 10 DOF damped system are analyzed. Comparison with a conventional reduction method based on a complete model has been made via eigenpairs and dynamic responses.

  • PDF

Hybrid Component Mode Synthesis Considering Residual Dynamic Flexibility Attachment Mode (잔여 동연성 부가 모드를 고려한 혼합 부분 모드 합성법)

  • Cha Hyun Joo;Kim Jin Ho;Lee Shi Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.716-725
    • /
    • 2005
  • The method of substructure synthesis o. component mode synthesis(CMS) provides an effective means of dynamic analysis of very large and/or complex structures. In this study, residual dynamic flexibility attachment modes in hybrid component mode synthesis are considered for the purpose of exactly compensating the effect of higher order truncated modes. Following this way, the analysis accuracy of the synthesized structure can be improved effectively with less computational effort. In order to show the accuracy and effectiveness of the proposed hybrid component mode synthesis(HCMS), numerical experiments were carried out for the models of a clamped-clamped beam. The results verified the effectiveness of the proposed method.

Modal Parameter Sensitivity Analysis Using Component Mode Synthesis Method (부분 구조물의 모드 합성을 이용한 구조물 모드 매개변수의 민감도 해석)

  • 김형중;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.184-191
    • /
    • 1997
  • A method, termed as the substructural sensitivity synthesis method, which utilizes the computational merits of the component mode synthesis technique is proposed to calculate design sensitivity of modal parameters of substructurally combined structures. In this method, the sensitivity analysis is combined with component mode synthesis thchnique. thus the degrees of freedom of a combined structure can be dramatically reduced. Free-interface mode method including the residual attachment modes among the component mode synthesis methods is used to calculate the modal sensitivity of the combined structure. For the design sensitivities of modal properties of structure, the Nelson's method, which is exact solving method is used. It is shown that the modal sensitivities of the entire structure can be obtained by synthesizing the substructural modal data, and the sensitivities of the modal data about the design variables of modifiable substructure. Using the proposed method, the final degrees of freedom of entire structure can be remarkably reduced to calculate the modal parameter sensitivities. With a structure composed of beams and plates, as an example, the sensitivities of the eigenvalues and eigenvectors obtained by this proposed method were compared with the exact solutions in terms of accuracy.

  • PDF