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Abstract

The objective of the paper is to clarify a methodology based on the use of the existing component mode synthesis methods for 

the case of two damped substructures which are coupled through a linking viscoelastic flexible substructure and for which the 

structural modes with free geometrical interface are used for each main substructure. The proposed methodology corresponds 

to a convenient alternative to the direct use either of the Craig-Bampton method applied to the three substructures (using 

the fixed geometric interface modes) or of the flexibility residual approaches initiated by MacNeal (using the free geometric 

interface modes). In opposite to a geometrical interface which is a topological interface on which there is a direct linkage 

between the degrees of freedom of substructures, we consider a physical flexible interface which exists in certain present 

technologies and for which the general framework linear viscoelasticity is used and yields a frequency-dependent damping 

and stiffness matrices of the physical flexible interface.
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Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

 of S

Nr	 =	 number of structural modes with free interface of Sr

F   	 = 	 vector of given forces in S associated with U
Fr	 = 	 vector of given forces in Sr associated with Ur

G 	 = 	 vector of given forces in S associated with V
Gr 	 = 	 vector of given forces in Sr associated with Vr

H 	 =	 vector of given forces in S associated with W
Hr 	 = 	 vector of given forces in Sr associated with Wr

U 	 = 	 vector of the DOFs in S 

Ur	 =	 vector of the DOFs in Sr

V	 = 	 vector of the DOFs of S on 

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

Vr	 = 	 vector of the DOFs of Sr on 

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

W	 = 	 vector of the DOFs in S and not in 

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

Wr	 =	 vector of the DOFs in Sr and not in 

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

S 	 = 	 linking substructure

Sr 	 = 	 main substructure (r = 1, 2)

n 	 =	�� n1+n2, total number of DOFs on geometrical 

interfaces 

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

nr 	 = 	 number of DOFs on geometrical interface 

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

 of Sr

m	 =	 total number of DOFs of linking substructure S

mr	 =	 total number of DOFs of main substructure Sr

p	 = 	 m − n 

pr	 = 	 mr − nr 

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

	 = 	 frequency in rad/s

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

	 =	 geometrical interface between Sr and S

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

	     	*	Professor	
	 **	Professor, Corresponding author : christian.soize@univ-paris-est.fr



DOI:10.5139/IJASS.2014.15.2.113 114

Int’l J. of Aeronautical & Space Sci. 15(2), 113–122 (2014)

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

	 =	�� matrix of the elastic modes with fixed interfaces 

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

 of S

2 

 

Nomenclature 
 
N = number of elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Nr = number of structural modes with free interface of Sr 
F    =  vector of given forces in S associated with U 
Fr      =  vector of given forces in Sr associated with Ur 
G  =  vector of given forces in S associated with V 
Gr  =  vector of given forces in Sr associated with Vr 
H  =      vector of given forces in S associated with W 
Hr  =  vector of given forces in Sr associated with Wr 
U  =  vector of the DOFs in S  
Ur = vector of the DOFs in Sr 
V =  vector of the DOFs of S on Γ1 ∪ Γ2 
Vr  =  vector of the DOFs of Sr on Γr 
W =  vector of the DOFs in S and not in Γ1 ∪ Γ2 
Wr = vector of the DOFs in Sr and not in Γr 
S  =  linking substructure 
Sr  =  main substructure (r = 1, 2) 
n  =  n1 + n2, total number of DOFs on geometrical interfaces Γ1 ∪ Γ2 
nr  =  number of DOFs on geometrical interface Γr of Sr 
m = total number of DOFs of linking substructure S 
mr = total number of DOFs of main substructure Sr 
p =  m − n  
pr = mr − nr 
ω = frequency in rad/s 
Γr = geometrical interface between Sr and S 
Φ0 = matrix of the elastic modes with fixed interfaces Γ1 ∪ Γ2 of S 
Φr  =  matrix of the structural modes with free interface of Sr 

 

1. Introduction 

  The present paper deals with a component mode synthesis method adapted to 
the analysis of a structural configuration made up of two coupled substructures 
through a physical flexible interface for which an adapted component synthesis 
method is the Hurty method that the authors have used and which can be viewed 
as an extension to a dynamical interface of the Kuhar-Stahle paper in 1974 [1] 
which was devoted to the static flexible coupling interface including a shifting 

	 =	�� matrix of the structural modes with free interface 

of Sr

1. Introduction

The present paper deals with a component mode 

synthesis method adapted to the analysis of a structural 

configuration made up of two coupled substructures 

through a physical flexible interface for which an adapted 

component synthesis method is the Hurty method that the 

authors have used and which can be viewed as an extension 

to a dynamical interface of the Kuhar-Stahle paper in 1974 

[1] which was devoted to the static flexible coupling interface 

including a shifting iterative method, this last aspect being 

not necessary for the methodology proposed. The dynamics 

of the interface is considered as soon as the thickness of the 

interface is not to small and the flexibility of the interface is 

relatively significant. Since such the methodology proposed 

to analyze such a configuration has never explicitly been 

detailed in the literature (at the knowledge of the author), 

the objective of the paper is to propose a clarification about 

such a formulation based on existing component synthesis 

methods. The proposed methodology corresponds to a 

convenient alternative to the direct use either of the Craig-

Bampton method applied to the three substructures (using 

the fixed geometric interface modes) or of the flexibility 

residual approaches initiated by MacNeal (using the free 

geometric interface modes). 

In this paper, a geometrical interface means a topological 

interface on which there is a direct linkage between the 

degrees of freedom of substructures. In opposite, a physical 

flexible interface must be understood as a third continuum 

medium constituting a third flexible substructure. Taking 

into account the nature of the physical flexible interface 

existing in certain present technologies, the authors also 

take the opportunity to propose a more general framework 

for the physical flexible interface which is then assumed to 

have a linear viscoelastic behavior which yields a frequency-

dependent damping and stiffness matrices of the physical 

flexible interface.

Among all the given references, let us cite two important 

interesting general reviews which have been published by 

Craig in 1985 [2] and de Klerk, Rixen and Voormeeren in 

2008 [3], in which the component mode synthesis methods 

and variants are described. Nevertheless, in order to position 

the methodology proposed with respect to the existing 

component mode synthesis methods, we give a brief review 

of the history of the major developments in this field. The 

readers are referred to [2, 3] for complete details of these 

general methods.

We are then interested in the construction of a reduced-

order model for linear vibration of a damped structure 

subjected to prescribed forces and composed of two main 

linear damped substructures connected through a linking 

linear viscoelastic flexible substructure.

The two main substructures are thus coupled through a 

dissipative physical interface. Such a reduced-order model 

allows the frequency response function calculations to 

be carried out. More precisely, this paper is devoted to 

computational aspects of a substructure coupled with 

another substructure through a third linking substructure, 

using a dynamic substructuring method and a modal 

reduction procedure, under the hypothesis that the two main 

substructures are represented by their structural modes with 

free geometrical interface (the structural modes are defined 

as the ensemble of the elastic modes (modes presenting 

deformations) and the rigid body modes if they exist).

This situation is often encountered due to experimental 

considerations and/or due to engineering specifications 

for each main substructures, in particular, in aerospace 

engineering.

The concept of substructures to perform a matrix 

structural analysis was first introduced by Argyris and 

Kelsey in 1959 [4] and by Przemieniecki in 1963 [5] who 

introduced the decomposition of the static displacement 

field in structural analysis into two spaces, one is the space 

of the substructure with fixed boundary and the second one 

is the correction of boundary relaxation, later called, the 

static boundary functions in dynamic substructuring. The 

Przemieniecki work devoted to static structural problem was 

extended by Guyan and Irons in 1965 [6, 7] and to structural 

dynamics using as an approximation the static boundary 

functions for the mass matrix. In 1960 and 1965, Hurty [8, 9] 

considered the case of two substructures coupled through 

a geometrical interface, for which the first substructure is 

represented using its elastic modes with fixed geometrical 

interface and the second substructure is represented using 

its elastic modes with free geometrical interface completed 

by static boundary functions of the first substrucure. Finally, 

Craig and Bampton in 1968 [10] adapted the Hurty method 

in order to represent each substructure of the same manner 

consisting in using the elastic modes of the substructure with 

fixed geometrical interface and the static boundary functions 

on its geometrical interface. For complex dynamical systems 

with many appendages considered as substructures (such as 

disk with blades), Benfield and Hruda in 1971 [11] proposed a 

component mode substitution using the Craig and Bampton 
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method for each appendage.

Starting from these pioneering fundamental works, 

in the last four decades, improvements of the dynamic 

substructuring methodology have been proposed with 

many variants (see [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 

24, 25]).

Another type of methods has been introduced in order to 

use the structural modes with free geometrical interface for 

two coupled substructures instead of the structural modes 

with fixed geometrical interface (elastic modes) as used in 

the Craig and Bampton method. In this context, MacNeal 

in 1971 [26] introduced the concept of residual flexibility 

and then used by Rubin in 1975 [27]. From this pioneering 

fundamental papers, several works have been published and 

among them, let us cite [28, 29, 30, 31, 32, 33]. In this context, 

the Lagrange multipliers have also been used to write the 

coupling on the geometrical interface [23, 34, 35, 36]

As damping plays an important role in the prediction of 

the dynamical responses, substructuring techniques taking 

into account damping have been the subject of several 

investigations, for instance, [37, 38, 39, 40, 41, 42, 43, 44, 45, 

46, 47]. In particular, the damping modeling is important in 

the medium-frequency range which has been analyzed in 

[48, 49, 50, 51] in the context of substructuring techniques. 

In addition, uncertainty quantification is nowadays 

recognized as playing an important role in order to improve 

the robustness of the numerical simulations for the low-

frequency range and especially, in the medium-frequency 

range and some works have been developed in the context of 

substructuring techniques [52, 53, 54, 55, 56, 57, 58].

Experimental modal substructuring, which is very useful 

for updating computational models of substructures, has 

been developed and several papers devoted to this subject 

have been published, among them [59, 60, 61, 62, 63, 64, 65, 

66].

Finally, some other aspects of substructuring techniques 

related to sensitivity analysis, response surface, interpolation 

with respect to system parameters, control and optimization 

can be found in [67, 68, 69, 70, 71, 72, 73, 74, 75].

Reviews have also been performed [2, 3]. It should 

be noted that all these above dynamic substructuring 

methodologies, which have been developed for the discrete 

case (computational model), have also been reanalyzed 

in the framework of the continuous case (continuum 

mechanics) by Morand and Ohayon in 1979 [76] for which 

details can be found [77] for conservative systems and by 

Ohayon and Soize in 1998 [42] for the dissipative systems.

General computational methods, computational linear 

structural dynamics and vibration, algorithms for solving 

large eigenvalue problems and uncertainty quantification 

will not be developed in this paper and we refer the reader to 

the following basic reference books [78, 79, 80, 81, 82, 83, 84, 

85, 86, 77, 42, 87, 88, 89, 90, 91, 92].

A physical interface (the linking substructure) between 

two coupled substructures, modeled by an elastic 

medium, has been considered by [1] without introducing 

additional degrees of freedom in the junction. In this 

paper, a generalization of the Kuhar and Stahle work 

[1] is proposed. The theoretical aspects adapted to 

computational dynamics are thus presented for linear 

elastodynamic of a damped structure composed of 

two main damped substructures coupled through a 

dissipative physical interface made up of a linking damped 

substructure. A reduced-order model is constructed using 

the structural modes of the two main substructures with 

free geometrical interface and, for the linking substructure, 

using an appropriate vector basis with fixed geometrical 

interfaces and an appropriate static boundary matrix with 

respect to the geometrical interfaces.

In order to preserve the readability of the paper, the theory 

is presented in the context of computational mechanics using 

the matrix formulation corresponding to the discretized 

system (finite element discretization) and without giving 

the continuous formulation that can be found in [93]. As 

the methodology presented is supported by theoretical 

arguments, numerical examples are not presented in this 

paper.

We consider a structure composed of two damped main 

substructures S1 and S2 coupled through a dissipative 

physical interface S (linking damped substructure) by 

two geometrical interfaces Γ1 and Γ2 (see Fig. 1). The 

matrix equations are written in the frequency domain. 

The linking damped substructure S is modeled in the 

context of the general linear viscoelasticity theory [94, 95], 

yielding damping and stiffness matrices depending on 

the frequency, while the two main damped substructures 

S1 and S2 are modeled in the context of linear elasticity 

with an additional classical damping modeling which is 

assumed to be independent of the frequency (the extension 

to the case of frequency-dependent damping matrix is 

straightforward). The methodology proposed can be 

summarized as follows.

As explained above, it is assumed that the two main 

substructures are represented using the structural modes of 

each main substructure with free geometrical interface. The 

methodology proposed is based on the use of an adapted 

combination of the Guyan [6], Hurty [8, 9] and Craig & 

Bampton [10] works. Firstly, the structural modes (elastic 

modes presenting deformations and rigid body modes if 

they exist) are computed for each substructure Sr with free 
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geometrical interface Γr. Secondly, an appropriate vector 

basis corresponding to a generalized eigenvalue problem 

for the linking substructure S is computed with fixed 

geomet-rical interfaces Γ1 
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functions (static boundary matrix corresponding to a Schur 

complement calculation of the stiffness matrix at zero 

frequency in the context of matrix analysis) are calculated. 

In dynamic substructuring, when the structural modes with 

free geometrical interface are used for the substructures, 

the common methodology consists in using the residual 

flexibility methods and/or the Lagrange multipliers 

procedures. We investigate here the alternative methodology 

summarized above.

2. ��Structural modes of main substructure Sr 
with free geometrical interface Γr 

As explained above, the problem is formulated in the 

frequency domain for which the frequency is denoted by 

ω(in rad/s). For r=1,2, the mr-DOFs computational model 

of main substructure Sr, with free geometrical interface Γr, is 

represented by the (mr × mr) real matrices Mr, Kr and Kr, and by 

the real vectors Ur and Fr of dimension mr . The mass matrix 

Mr is positive and invertible (positive definite). The damping 

matrix Dr and the stiffness matrix Kr, which are assumed to 

be frequency independent, are positive and, either invertible 

(positive definite if there are no rigid body motions), or 

not invertible (positive semidefinite if there are rigid body 

motions). The frequency-dependent displacements vector 

Ur=(Vr, Wr) is decomposed into the vector Vr of dimension nr 

(number of DOFs on geometrical interface Γr) and the vector 

Wr of dimension pr=mr−nr (number of the other DOFs). 

The frequency-dependent vector of external given forces 

Fr= (Gr, Hr) is decomposed into the vector Gr of dimension 

nr (components of the forces relative to the mr DOFs of the 

geometrical interface Γr) and the vector Hr of dimension 

pr=mr−nr (components of the forces relative to the other 

DOFs).

The Nr≤mr structural modes of substructure Sr with 

free geometrical interface Γr are calculated with the 

computational model solving the classical generalized 

eigenvalue problem,
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in which Ωr
α =√

λr
α. If rigid body motions exist, the corresponding zero eigenvalues and the

associated structural modes are included in the sequence above. Vector Ur is
projected on the structural modes and writes

Ur = Φr qr , (2)

in which qr is the vector of dimension Nr of the generalized coordinates. With
respect to the decomposition Ur = (Vr,Wr), Eq. (2) yields

Vr = Φr
V qr , Wr = Φr

W qr , (3)

in which matrix Φr has been written in the block form with respect to Ur =
(Vr,Wr) as

Φr =

[
Φr

V

Φr
W

]
. (4)

3. Reduced-order matrix model of linking flexible viscoelastic substructure S
Similarly to the previous matrix description of the two main substructures, the

m-DOFs computational model of linking substructure S, with free geometrical
interfaces Γ1 and Γ2, is represented by the (m × m) real matrices M, D(ω) and
K(ω), and by the real vectors U and F of dimension m. The mass matrix M is
positive and invertible. The damping matrix D(ω) and the stiffness matrix K(ω),
which depend on the frequency, are positive and, either invertible (if there are
no rigid body motions), or not invertible (if there are rigid body motions). The
frequency-dependent displacements vector U = (V,W) is decomposed into the
vector V of dimension n = n1 + n2 (number of DOFs on geometrical interface
Γ = Γ1 ∪ Γ2) and the vector W of dimension p = m − n (number of the other
DOFs). The frequency-dependent vector of external given forces F = (G,H) is
decomposed into the vector G of dimension n (components of the forces relative
to the m DOFs of the geometrical interface Γ) and the vector H of dimension
p = m− n (components of the forces relative to the other DOFs).
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Kr Φr = Mr Φr Λr , (1)

in which Λr is the diagonal matrix of the eigenvalues λr
1 ≤ . . . ≤ λr

Nr
and where

Φr is the rectangular (mr × Nr) real matrix whose columns are the structural
modes associated with the eigenfrequencies Ωr

1 ≤ . . . ≤ Ωr
Nr

in which Ωr
α =√

λr
α. If rigid body motions exist, the corresponding zero eigenvalues and the

associated structural modes are included in the sequence above. Vector Ur is
projected on the structural modes and writes

Ur = Φr qr , (2)

in which qr is the vector of dimension Nr of the generalized coordinates. With
respect to the decomposition Ur = (Vr,Wr), Eq. (2) yields

Vr = Φr
V qr , Wr = Φr

W qr , (3)

in which matrix Φr has been written in the block form with respect to Ur =
(Vr,Wr) as

Φr =

[
Φr

V

Φr
W

]
. (4)

3. Reduced-order matrix model of linking flexible viscoelastic substructure S
Similarly to the previous matrix description of the two main substructures, the

m-DOFs computational model of linking substructure S, with free geometrical
interfaces Γ1 and Γ2, is represented by the (m × m) real matrices M, D(ω) and
K(ω), and by the real vectors U and F of dimension m. The mass matrix M is
positive and invertible. The damping matrix D(ω) and the stiffness matrix K(ω),
which depend on the frequency, are positive and, either invertible (if there are
no rigid body motions), or not invertible (if there are rigid body motions). The
frequency-dependent displacements vector U = (V,W) is decomposed into the
vector V of dimension n = n1 + n2 (number of DOFs on geometrical interface
Γ = Γ1 ∪ Γ2) and the vector W of dimension p = m − n (number of the other
DOFs). The frequency-dependent vector of external given forces F = (G,H) is
decomposed into the vector G of dimension n (components of the forces relative
to the m DOFs of the geometrical interface Γ) and the vector H of dimension
p = m− n (components of the forces relative to the other DOFs).
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with fixed geometrical interface Γ = Γ1 ∪ Γ2 (deduced from M and K(ω)). For fixed ω, the N 
≤ p eigenvectors of linking substructure S with fixed geometrical interface Γ are then computed 
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vector basis of R� and �������� � ������� spans a subspace of R� of dimension N 

  Remarks. The reduced-order model of order N, which is constructed for analyzing the 
response of the structure for ω belonging to a given frequency band of analysis B = [ωmin , 
ωmax] with 0 ≤ ωmin < ωmax, is chosen independent of ω. In practice, the response is calculated 
for the frequencies belonging to the set B = {ω1, ω2, . . . , ωμ} of μ sampling frequencies of 
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A physical interface (the linking substructure) between two coupled substructures, 

modeled by an elastic medium, has been considered by [1] without introducing additional 
degrees of freedom in the junction. In this paper, a generalization of the Kuhar and Stahle work 
[1] is proposed. The theoretical aspects adapted to computational dynamics are thus presented 
for linear elastodynamic of a damped structure composed of two main damped substructures 
coupled through a dissipative physical interface made up of a linking damped substructure. A 
reduced-order model is constructed using the structural modes of the two main substructures 
with free geometrical interface and, for the linking substructure, using an appropriate vector 
basis with fixed geometrical interfaces and an appropriate static boundary matrix with respect 
to the geometrical interfaces. 

In order to preserve the readability of the paper, the theory is presented in the context of 
computational mechanics using the matrix formulation corresponding to the discretized system 
(finite element discretization) and without giving the continuous formulation that can be found 
in [93]. As the methodology presented is supported by theoretical arguments, numerical 
examples are not presented in this paper. 

We consider a structure composed of two damped main substructures   and  coupled 
through a dissipative physical interface S (linking damped substructure) by two geometrical 
interfaces Γ1 and Γ2 (see Fig. 1). The matrix equations are written in the frequency domain. The 
linking damped substructure S is modeled in the context of the general linear viscoelasticity 
theory [94, 95], yielding damping and stiffness matrices depending on the frequency, while the 
two main damped substructures  and  are modeled in the context of linear elasticity with 
an additional classical damping modeling which is assumed to be independent of the frequency 
(the extension to the case of frequency-dependent damping matrix is straightforward). The 
methodology proposed can be summarized as follows. 

As explained above, it is assumed that the two main substructures are represented using the 
structural modes of each main substructure with free geometrical interface. The methodology 
proposed is based on the use of an adapted combination of the Guyan [6], Hurty [8, 9] and 
Craig & Bampton [10] works. Firstly, the structural modes (elastic modes presenting 
deformations and rigid body modes if they exist) are computed for each substructure Sr with 
free geometrical interface Γr. Secondly, an appropriate vector basis corresponding to a 
generalized eigenvalue problem for the linking substructure S is computed with fixed geomet-
rical interfaces Γ1 ∪ Γ2 and the static boundary functions (static boundary matrix 
corresponding to a Schur complement calculation of the stiffness matrix at zero frequency in 
the context of matrix analysis) are calculated. In dynamic substructuring, when the structural 
modes with free geometrical interface are used for the substructures, the common methodology 
consists in using the residual flexibility methods and/or the Lagrange multipliers procedures. 
We investigate here the alternative methodology summarized above. 
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dimension N is solved for all ω in B  in order to construct the corresponding approximation  
~ (ω) of Λ(ω) for the μ frequencies in B. Such a procedure can be found in [73].  

3) Another way consists in replacing the above interpolation procedure by the following  
construction of a frequency-independent basis adapted to band B. It consists in extracting the 
larger family of linearly independent vectors from the family �Φ����� ��� �Φ� ����� �� 

4) If K0(ω) slowly varies on band B, a well adapted frequency-independent basis for all ω 
in B, consists in choosing Φ0(ω) for a given ω in B but in such a case convergence with respect 
to N must be carefully checked. 

5) More generally, any subset of N vectors extracted from a family of linearly independent 
vectors can be used. Let us cite, for instance, the methods belonging to the class of the Proper 
Orthogonal Decomposition (POD) procedure. 
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80, 81, 82, 83, 84, 85, 86, 77, 42, 87, 88, 89, 90, 91, 92]. 
A physical interface (the linking substructure) between two coupled substructures, 

modeled by an elastic medium, has been considered by [1] without introducing additional 
degrees of freedom in the junction. In this paper, a generalization of the Kuhar and Stahle work 
[1] is proposed. The theoretical aspects adapted to computational dynamics are thus presented 
for linear elastodynamic of a damped structure composed of two main damped substructures 
coupled through a dissipative physical interface made up of a linking damped substructure. A 
reduced-order model is constructed using the structural modes of the two main substructures 
with free geometrical interface and, for the linking substructure, using an appropriate vector 
basis with fixed geometrical interfaces and an appropriate static boundary matrix with respect 
to the geometrical interfaces. 

In order to preserve the readability of the paper, the theory is presented in the context of 
computational mechanics using the matrix formulation corresponding to the discretized system 
(finite element discretization) and without giving the continuous formulation that can be found 
in [93]. As the methodology presented is supported by theoretical arguments, numerical 
examples are not presented in this paper. 

We consider a structure composed of two damped main substructures   and  coupled 
through a dissipative physical interface S (linking damped substructure) by two geometrical 
interfaces Γ1 and Γ2 (see Fig. 1). The matrix equations are written in the frequency domain. The 
linking damped substructure S is modeled in the context of the general linear viscoelasticity 
theory [94, 95], yielding damping and stiffness matrices depending on the frequency, while the 
two main damped substructures  and  are modeled in the context of linear elasticity with 
an additional classical damping modeling which is assumed to be independent of the frequency 
(the extension to the case of frequency-dependent damping matrix is straightforward). The 
methodology proposed can be summarized as follows. 

As explained above, it is assumed that the two main substructures are represented using the 
structural modes of each main substructure with free geometrical interface. The methodology 
proposed is based on the use of an adapted combination of the Guyan [6], Hurty [8, 9] and 
Craig & Bampton [10] works. Firstly, the structural modes (elastic modes presenting 
deformations and rigid body modes if they exist) are computed for each substructure Sr with 
free geometrical interface Γr. Secondly, an appropriate vector basis corresponding to a 
generalized eigenvalue problem for the linking substructure S is computed with fixed geomet-
rical interfaces Γ1 ∪ Γ2 and the static boundary functions (static boundary matrix 
corresponding to a Schur complement calculation of the stiffness matrix at zero frequency in 
the context of matrix analysis) are calculated. In dynamic substructuring, when the structural 
modes with free geometrical interface are used for the substructures, the common methodology 
consists in using the residual flexibility methods and/or the Lagrange multipliers procedures. 
We investigate here the alternative methodology summarized above. 
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in which I� is the (n × n) identity matrix. Vector U = (V,W) is then the transformation of 
vector (V,q) such that W =  SV + Φ0(ω)q in which q is the vector of the generalized 
coordinates of dimension N. The kinematic coupling conditions on geometrical interfaces Γ1 

and Γ2 writes V = (V�, V�) and the previous equation is then rewritten as 
 
                       � � R�q� � R�q� � ��(ω)q,                          (9) 

in which, for r = 1, 2, the frequency-independent (p × Nr) real matrix R� is written by blocks,  

                                                               Rr �  S�� �V
r

S2r �V
r �                                                                       ��0� 

In which the following block decomposition of matrix S, relative to (V�, V��, has been used, 

                            S �  S�� S��
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80, 81, 82, 83, 84, 85, 86, 77, 42, 87, 88, 89, 90, 91, 92]. 
A physical interface (the linking substructure) between two coupled substructures, 

modeled by an elastic medium, has been considered by [1] without introducing additional 
degrees of freedom in the junction. In this paper, a generalization of the Kuhar and Stahle work 
[1] is proposed. The theoretical aspects adapted to computational dynamics are thus presented 
for linear elastodynamic of a damped structure composed of two main damped substructures 
coupled through a dissipative physical interface made up of a linking damped substructure. A 
reduced-order model is constructed using the structural modes of the two main substructures 
with free geometrical interface and, for the linking substructure, using an appropriate vector 
basis with fixed geometrical interfaces and an appropriate static boundary matrix with respect 
to the geometrical interfaces. 

In order to preserve the readability of the paper, the theory is presented in the context of 
computational mechanics using the matrix formulation corresponding to the discretized system 
(finite element discretization) and without giving the continuous formulation that can be found 
in [93]. As the methodology presented is supported by theoretical arguments, numerical 
examples are not presented in this paper. 

We consider a structure composed of two damped main substructures   and  coupled 
through a dissipative physical interface S (linking damped substructure) by two geometrical 
interfaces Γ1 and Γ2 (see Fig. 1). The matrix equations are written in the frequency domain. The 
linking damped substructure S is modeled in the context of the general linear viscoelasticity 
theory [94, 95], yielding damping and stiffness matrices depending on the frequency, while the 
two main damped substructures  and  are modeled in the context of linear elasticity with 
an additional classical damping modeling which is assumed to be independent of the frequency 
(the extension to the case of frequency-dependent damping matrix is straightforward). The 
methodology proposed can be summarized as follows. 

As explained above, it is assumed that the two main substructures are represented using the 
structural modes of each main substructure with free geometrical interface. The methodology 
proposed is based on the use of an adapted combination of the Guyan [6], Hurty [8, 9] and 
Craig & Bampton [10] works. Firstly, the structural modes (elastic modes presenting 
deformations and rigid body modes if they exist) are computed for each substructure Sr with 
free geometrical interface Γr. Secondly, an appropriate vector basis corresponding to a 
generalized eigenvalue problem for the linking substructure S is computed with fixed geomet-
rical interfaces Γ1 ∪ Γ2 and the static boundary functions (static boundary matrix 
corresponding to a Schur complement calculation of the stiffness matrix at zero frequency in 
the context of matrix analysis) are calculated. In dynamic substructuring, when the structural 
modes with free geometrical interface are used for the substructures, the common methodology 
consists in using the residual flexibility methods and/or the Lagrange multipliers procedures. 
We investigate here the alternative methodology summarized above. 
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S2, using Eq. (2) for r=1 

and r=2 and using Eq. (9) yield the projection matrix T(ω) 

which relates the physical displacement vector (U1, W, U2) 

of dimension m1+p+m2 to the generalized coordinates(q1, q, 

q2), such that

(12)

It should be noted that the viscoelasticity behavior of the 

physical flexible inter-face implies that the projection matrix 

defined by Eq. (12) depends on ω.

4.2. ��Dynamic stiffness matrix and given forces vec-
tor for each substructure

Below, ω is the frequency considered as a real parameter. 

For r=1, 2, the dynamic stiffness matrix of the main 

substructure Sr is the symmetric (mr × mr) complex matrix 

Ar(ω) which is written as Ar(ω)=−ω2Mr+iωDr+Kr. The 

dynamic stiffness matrix of the linking flexible viscoelastic 

substructure S is the symmetric (m × m) complex matrix 

A(ω) which is written as A(ω)=−ω2M+iωD+K. The following 

block decomposition of matrix A(ω), with respect to (V1, V2, 

W) of dimension n1+n2+p, is defined as
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and the given frequency-dependent forces vector F=(G, H) 

is rewritten as F=(GV1
, GV2
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2, the (mr × mr) complex matrix Br(ω), the (mr × mr) complex 

matrix Cr(ω) and the frequency-dependent (mr × 1) complex 

matrix Jr are defined by blocks as follows

(14)

Finally, we introduce the symmetric (m1+p+m2) × 

(m1+p+m2) complex matrices, A1(ω), A2(ω) and A(ω) defined 

by blocks, with respect to (U1, W, U2), by
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of dimension n1 + n2 + p. For r = 1, 2, the (mr × mr ) complex matrix Br(ω), the (mr × mr ) 
complex matrix Cr(ω) and the frequency-dependent (mr × 1) complex matrix Jr are defined by 
blocks as follows 
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0 0�   ,  ����� � ��������

0 �    ,     J� � �G��0 � .      ���� 

Finally, we introduce the symmetric (m1 + p + m2) × (m1 + p + m2) complex matrices, 
A����, A����and A���defined by blocks, with respect to (U�, W, U�), by 
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� ,                      (16) 

and the frequency-dependent m1 + p + m2 complex vectors F�(ω), F�(ω) and F(ω) defined by 
blocks, with respect to (U�, W, U�), by 

F� � �F
�

0
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�   ,   F� � �
0
0
F�

�   ,   F � �
JV��
JV�

�  .               (17) 

Consequently, the equilibrium dynamic equation for the m1 + p + m2 complex displacements 
vector, U = (U�, W, U�), of the assembled structure S� � S � S�, is written as 

[A1(ω) + A(ω) + A2(ω)] U = F1 + F + F2 .       (18)

 

4.3. Reduced-order matrix model of the assembled structure 

For all frequency ω considered as a parameter, the projection of Eq. (18) is performed 
using the transformation T(ω) defined by Eq. (12). For the assembled structure, the reduced-
order matrix model is obtained in terms of the vector q = (q1, q, q2) of dimension N1 + N + N2 
and is such that U = T(ω) q, in which q is solution of the following symmetric reduced 
complex matrix equation, 

 

[A1(ω) + A(ω) + A2(ω)] q = F 1 + F + F 2 ,    (19)

in which Ar(ω) = T(ω)T Ar(ω) T(ω), A(ω) = T(ω)T A(ω) T(ω), Fr = T(ω)T Fr and F = T(ω)T 
F. For all ω belonging to frequency band of analysis B = [ωmin , ωmax], the convergence of the 
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blocks as follows 

����� � ������� 0
0 0�   ,  ����� � ��������

0 �    ,     J� � �G��0 � .      ���� 
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A����, A����and A���defined by blocks, with respect to (U�, W, U�), by 

A���� � �
A���� 0  0

0 0  0
0 0  0

�   ,   A���� � �
0    0 0
0    0 0
0    0 A����

�           ���� 

A��� � �
B���� C����  0

C����T A����  C����T

0 C���� B����
� ,                      (16) 

and the frequency-dependent m1 + p + m2 complex vectors F�(ω), F�(ω) and F(ω) defined by 
blocks, with respect to (U�, W, U�), by 

F� � �F
�

0
0

�   ,   F� � �
0
0
F�

�   ,   F � �
JV��
JV�

�  .               (17) 

Consequently, the equilibrium dynamic equation for the m1 + p + m2 complex displacements 
vector, U = (U�, W, U�), of the assembled structure S� � S � S�, is written as 

[A1(ω) + A(ω) + A2(ω)] U = F1 + F + F2 .       (18)
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For all frequency ω considered as a parameter, the projection of Eq. (18) is performed 
using the transformation T(ω) defined by Eq. (12). For the assembled structure, the reduced-
order matrix model is obtained in terms of the vector q = (q1, q, q2) of dimension N1 + N + N2 
and is such that U = T(ω) q, in which q is solution of the following symmetric reduced 
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5. Conclusion

We have clarified an alternative methodology based on 

the use of the existing component mode synthesis methods 

for the case of two damped substructures coupled through a 

linking viscoelastic flexible substructure and for which the 

structural modes with free geometrical interface are used 

for each main substructure. The notion of physical flexible 

interface has also been defined. More generally, this model 

can be adapted for complex linking flexible substructure 

including smart materials, semi-active of active controls. In 

general for a complex linking substructure, there are model 

uncertainties induced by modeling errors which can be taken 

into account in the context of the methodology proposed.
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