• Title/Summary/Keyword: Substructure Method

Search Result 334, Processing Time 0.024 seconds

Substructural parameters and dynamic loading identification with limited observations

  • Xu, Bin;He, Jia
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.169-189
    • /
    • 2015
  • Convergence difficulty and available complete measurement information have been considered as two primary challenges for the identification of large-scale engineering structures. In this paper, a time domain substructural identification approach by combining a weighted adaptive iteration (WAI) algorithm and an extended Kalman filter method with a weighted global iteration (EFK-WGI) algorithm was proposed for simultaneous identification of physical parameters of concerned substructures and unknown external excitations applied on it with limited response measurements. In the proposed approach, according to the location of the unknown dynamic loadings and the partially available structural response measurements, part of structural parameters of the concerned substructure and the unknown loadings were first identified with the WAI approach. The remaining physical parameters of the concerned substructure were then determined by EFK-WGI basing on the previously identified loadings and substructural parameters. The efficiency and accuracy of the proposed approach was demonstrated via a 20-story shear building structure and 23 degrees of freedom (DOFs) planar truss model with unknown external excitation and limited observations. Results show that the proposed approach is capable of satisfactorily identifying both the substructural parameters and unknown loading within limited iterations when both the excitation and dynamic response are partially unknown.

Vertical isolation of a structure based on different states of seismic performance

  • Milanchian, Reza;Hosseini, Mahmood;Nekooei, Masoud
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.103-118
    • /
    • 2017
  • In vertical seismic isolation (VSI), a building is partitioned intentionally by vertical layers into two dynamically different substructures for seismic response reduction. Initially, a 1-story frame was partitioned into two substructures, interconnected by viscous and visco-elastic links, and seismic responses of the original and the vertically isolated structures (VIS) were obtained, considering a large number of stiffness and mass ratios of substructures with respect to the original structure. Color contour graphs were defined for presentation and investigation of large amounts of output results. Dynamic characteristics of the isolated structures were studied by considering the non-classical damping of the system, and then the effects of viscous and visco-elastic link parameters on the modal damping ratios were discussed. On this basis, three states of mass isolation, interactional state, and control mass were differentiated. Response history analyses were performed by Runge-Kutta numerical method. In these analyses, interaction of isolation ratios and link parameters, on response control of VIS was studied and the appropriate ranges for link parameters as well as the optimal ranges for isolation ratios were suggested. Results show that by using the VSI technique, seismic response reduction up to 50% in flexible substructure and even more in stiff substructure is achievable.

A Time Integration Method for Analysis of Dynamic Systems Using Domain Decomposition Technique

  • Fujikawa Takeshi;Imanishi Etsujiro
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.429-436
    • /
    • 2005
  • This paper presents a precise and stable time integration method for dynamic analysis of vibration or multibody systems. A total system is divided into several subsystems and their responses are calculated separately, while the coupling effect is treated equivalently as constant force during time steps. By using iterative procedure to improve equivalent coupling forces, a precise and stable solution is obtained. Some examples such as a seismic response and multibody analyses were carried out to demonstrate its usefulness.

강 박스 거더교의 격벽응력 해석 (The Stress Analysis of Diaphragm in Steel box girder bridge)

  • 조현영;정진환;박중민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.80-86
    • /
    • 1997
  • Recently, the box-girder bridge became quite popular because of the effectiveness of the box section against torsional deformation, and the finite element method has been one of the powerful and versatile method for obtaining the solution of box-girder bridge. The finite element method is used to solve a box girder which is built up with flat plates such as flanges, webs and diaphragm, and box girder is idealized by 8-nodes 2-dimensional isoparmetric finite element. To investigate the stress of diaphragm, substructure analysis is performed with two Parameters which are the location of support and slope of web.

  • PDF

반복 구조물의 모드 해석을 위한 효과적인 자유도 기반 축소 기법 (Degree-of-Freedom-Based Reduction Method for Modal Analysis of Repeated Structure)

  • 최검지;장성민
    • 한국전산구조공학회논문집
    • /
    • 제34권2호
    • /
    • pp.71-75
    • /
    • 2021
  • 본 논문에서는 자유도 기반 축소법과 부구조 기법을 적용한 반복 구조물의 효율적인 해석 기법을 소개한다. 기본 구조 반복된다는 특이성을 이용해 계산 방식을 개선하였다. 기본 구조를 하나의 부구조로 가정하고 IRS 기법을 통해 행렬을 축소하였고 부구조들의 결합 위치에 따라 축소된 행렬을 배치하여 계산하였다. 이 과정에서 행렬의 크기가 크게 줄어들어 계산 시간이 감소하고 그와 동시에 해석에 필요한 메모리의 용량이 줄어든다. 행렬 축소에 Guyan 축소법이 아닌 IRS기법을 사용하였기 때문에 추가적인 반복 계산 작업없이도 정확도가 유지된다. 개선된 방식은 수치 예제인 십자가 모양의 기본 구조를 통해 검증되었다.

치과용 레이저 선택가공 금속체의 도재 소성단계에 따른 색조변화 관찰 (Evaluation of Color Change according to Process Step of Fused Porcelain to SLM Method)

  • 김치영;정인성
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.236-242
    • /
    • 2010
  • 심미보철의 금속-도재관은 금속소재의 하부구조에 도재를 단계별로 소성하여 제작된다. 최근 새로운 기술인 SLM법을 이용하여 하부구조를 제작하고 있다. 본 연구에서는 금속-도재관의 하부구조를 주조법과 SLM법으로 제작하고 도재를 단계별로 소성하여 도재소성단계와 제작방법에 따른 색조변화를 측색기를 이용하여 관찰하였다. 도재의 소성단계에 따른 색조변화는 불투명도재 소성한 시편군(CN1, CC1, CT1, SC1, ST1)이 몸체도재소성 시편군(CN2, CC2, CT2, SC2, ST2)과 광택소성 시편군(CN3, CC3, CT3, SC3, ST3)과 색차(${\Delta}E$=30이상)를 나타냈다(p<0.05). 그리고 제작방법에 따른 색조관찰은 주조법으로 제작된 하부구조(CN, CC, CT)와 SLM법을 제작된 하부구조(SC, ST)간의 색차(${\Delta}E$=1.5이하)는 없는 것으로 나타났다. 따라서 도재의 소성단계에서는 몸체도재소성에서 색조가 표현되며, SLM법으로 제작된 금속-도재관의 색조는 임상적용이 가능한 것으로 판단된다.

주구조물 및 부구조물에 대한 감진장치의 지진응답 감소 효율성 (Effectiveness of Isolation-System on Reduction of Seismic Response of Primary and Secondary Structures)

  • 김영상;이동근
    • 대한토목학회논문집
    • /
    • 제12권4_1호
    • /
    • pp.9-21
    • /
    • 1992
  • 논문에서는 주구조물의 기초와 부구조물의 지지점에 설치된 감진장치가 구조물의 지진응답 감소에 미치는 영향을 분석하였다. 여러가지 지진하중의 특성에 따른 감진장치가 설치된 주구조물과 부구조물의 거동을 비교분석하였으며, 이때 사용된 해석모델은 고정기초 구조물에 지지점이 고정된 부구조물, 감진기초 구조물에 지지점이 고정된 부구조물, 고정기초 구조물에 지지점 감진장치가 설치된 부구조물과 같은 세가지이다. 부구조물의 응답계산에서는 주구조물과 부구조물의 상호작용을 고려하였다. 계산에 사용한 수치적분방법은 constant average acceleration 방법이며, 이 방법과 축소행렬방법을 이용한 전산프로그램(KBISAP)을 사용하였다. 또한 지진하중에 대한 구조물의 지면에 대한 상대변위를 제한시키기 위하여 여러가지 지진하중에 대한 구조물의 가속도와 변위의 상관관계를 계산하여 감진장치의 적합한 수평강성을 분석하였다.

  • PDF

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.