• Title/Summary/Keyword: Substrates

Search Result 6,515, Processing Time 0.034 seconds

Comparison on Properties of ZnO Thin Films Grown by RF Magnetron Sputtering on Various Oxide Substrates (다양한 산화물 기판 위에 RF 마그네트론 스퍼터링 방법으로 성장된 ZnO 박막의 특성 비교)

  • Lee, Jae-Wook;Jung, Chul-Won;Han, Seok-Kyu;Choi, Jun-Ho;Hong, Soon-Ku;Cho, Hyung-Koun;Song, Jung-Hoon;Lee, Jeong-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.289-293
    • /
    • 2007
  • ZnO thn films are grown on five kinds of oxide substrates including $c-Al_2O_3(0001),\;r-Al_2O_3(01-12)$, MgO(100), MgO(111), $NdGaO_3(110)$ by rf magnetron sputtering and effects substrate types on properties of ZnO thin films ate investigated. In order to compare the substrate effects one growth condition is selected and all the films are grown by the same growth condition. Structural and optical properties of the ZnO films ate different depending on the substrates although the films ate not epitaxial but polycrystalline. The ZnO film grown on $NdGaO_3(100)$ substrate shows the best overall properties among the films grown on substrates investigated in this study.

Thickness Dependence of GZO Gas Sensing Films Deposited on LTCC Substrates (LTCC 기판상에 증착한 GZO 가스 센싱 박막의 두께 의존 특성 연구)

  • Hwang, Hyun Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.215-218
    • /
    • 2011
  • A novel design of gas sensor using Ga-doped ZnO (GZO) thin films which are deposited on low temperature co-fired ceramic (LTCC) substrates is presented. The LTCC substrates with thickness of 400 ${\mu}m$ are fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The GZO thin films with different thickness are deposited on LTCC substrates, by RF magnetron sputtering method. The microstructure and sensing properties of GZO gas sensing films are analyzed as a function of the film thickness. The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The maximum sensitivity of 3.49 is obtained at 100 nm film thickness and the fastest 90% response time of 27.2 sec is obtained at 50 nm film thickness for the operating temperature of $400^{\circ}C$ to the $NO_2$ gas.

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • Nam, Ok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF

Dielectric and Structural properties of highly oriented $PST/LaNiO_3$ Thin Films for Microwave application (초고주파 응용을 위한 (100) 방향으로 성장된 PST / $LaNiO_3$박막의 구조적, 유전적 특성)

  • Eom, Joon-Chul;Lee, Sung-Gap;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.648-651
    • /
    • 2004
  • Pb0.5Sr0.5TiO3(PST) thin films were deposited on the LaNiO3 (LNO(100))/Si and Pt/Ti/SiO2/Si substrates by the alkoxide-based sol-gel method. Structural and dielectric properties of PST thin films for the tunable microwave device applications were investigated. The PST films, which were directly grown on the Pt/Ti/SiO2/Si substrates showed the random orientation. For the LNO/Si substrates, the PST thin films exhibited highly (100) orientation. Compared with randomly oriented films, the highly (100)-oriented PST thin films showed better dielectric constant, tunability, and figure of merit (FOM). The dielectric constant, tunability, and FOM of the highly (100)-oriented PST thin film increased with increasing annealing temperature due to the decrease in lattice distortion. The differences in dielectric properties may be attributed to the change in the film stress and the in-plane oriented Polar axis depending on the substrate was used. The dielectric constants, dielectric loss and tunability of the PST thin films deposited on the LNO/Si substrates measured at 1 MHz were 483, 0.002, and 60.1%, respectively.

  • PDF

Optical Properties of DLC-coated ZnS Substrates in the Mid-infrared Region (중적외선 영역의 DLC 코팅된 ZnS 기판의 광학 특성)

  • Kwon, Tae-Hyeong;Yeo, Seo-Yeong;Kim, Chang-Il;Nahm, Sahn;Kwon, Min-Chul;Chu, Byoung-Uck;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.101-105
    • /
    • 2019
  • ZnS substrates with excellent transmittance in the mid-infrared region ($3-5{\mu}m$) were prepared using hot pressing instead of conventional chemical vapor deposition (CVD). Diamond-like carbon(DLC) was coated on either one or both sides of the ZnS substrates to improve their mechanical properties and transmittance. More specifically DLC was coated using CVD with an Ar and $C_2H_2$ mixed gas, and Ge was used as the bonding layer. During CVD, the bias voltage was fixed to 500 V and analyzed by Fourier transform infrared spectroscopy (FT-IR), nanoindenter, scanning electron microscope and energy dispersive spectrometry. Results of hardness analysis using the nanoindenter, showed that DLC coating increased from 5.9 to 17.7 GPa after deposition. The FT-IR spectroscopy results showed that, in the mid-infrared region ($3-5{\mu}m$), the average transmittance of the samples with DLC coating on one and both sides increased by approximately 6% and approximately 11.2% respectively. In conclusion, the DLC coating improved the durability and transmittance of the ZnS substrates.

Numerical Analysis of the Sessile Droplet Evaporation on Heated Surfaces (가열된 표면에 고착된 액적의 증발 특성에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Yun, Kuk Hyun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Droplet evaporation has been known as a common phenomenon in daily life, and it has been widely used for many applications. In particular, the influence of the different heated substrates on evaporation flux and flow characteristics is essential in understanding heat and mass transfer of evaporating droplets. This study aims to simulate the droplet evaporation process by considering variation of thermal property depending on the substrates and the surface temperature. The commercial program of ANSYS Fluent (V.17.2) is used for simulating the conjugated heat transfer in the solid-liquid-vapor domains. Moreover, we adopt the diffusion-limited model to predict the evaporation flux on the different heated substrates. It is found that the evaporation rate significantly changes with the increase in substrate temperature. The evaporation rate substantially varies with different substrates because of variation of thermal property. Also, the droplet evaporates more rapidly as the surface temperature increases owing to an increase in saturation vapor pressure as well as the free convection effect caused by the density gradient.

Solution growth of polycrystalline silicon on Al-Si coated borosilicate and quartz glass substrates for low cost solar cell application (저가태양전지에 응용을 위한 용액성장법에 의한 Al-Si층이 코팅된 유리기판상의 다결정 실리콘 박막성장에 관한 연구)

  • Lee, S.H.;Queisser, H.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.238-244
    • /
    • 1994
  • We investigated solution growth of silicon on borosilicate and quartz glass substrates in the temperature range of $800^{\circ}C~520^{\circ}C$. A thin Al-Si layer evaporated onto the substrate serves to improve the wetting between the substrate and the Al/Ga solvent. Nucleation takes place by a reaction of Al with $SiO_2$ from the substrate. We obtained silicon deposits with a grain size up to a few 100 $\mu\textrm{m}$. There was a perferential (111) orientation for the case of quartz glass substrates while there is a strong contribution of other orientations for the deposition of Si on borosilicate glass substrates.

  • PDF

Evaluation of Immunoproteasome-Specific Proteolytic Activity Using Fluorogenic Peptide Substrates

  • Sumin Kim;Seo Hyeong Park;Won Hoon Choi;Min Jae Lee
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.28.1-28.11
    • /
    • 2022
  • The 26S proteasome irreversibly hydrolyzes polyubiquitylated substrates to maintain protein homeostasis; it also regulates immune responses by generating antigenic peptides. An alternative form of the 26S proteasome is the immunoproteasome, which contains substituted catalytic subunits (β1i/PSMB9, β2i/PSMB10, and β5i/PSMB8) instead of constitutively expressed counterparts (β1/PSMB6, β2/PSMB7, and β5/PSMB5). The immunoproteasome expands the peptide repertoire presented on MHC class I molecules. However, how its activity changes in this context is largely elusive, possibly due to the lack of a standardized methodology to evaluate its specific activity. Here, we describe an assay protocol that measures the immunoproteasome activity of whole-cell lysates using commercially available fluorogenic peptide substrates. Our results showed that the most accurate assessment of immunoproteasome activity could be achieved by combining β5i-targeting substrate Ac-ANW-AMC and immunoproteasome inhibitor ONX-0914. This simple and reliable protocol may contribute to future studies of immunoproteasomes and their pathophysiological roles during viral infection, inflammation, and tumorigenesis.

Comparative Study of Texture of Al/Ti Thin Films Deposited on Low Dielectric Polymer and SiO$_2$Substrates (저 유전상수 폴리머와 SiO$_2$기판위에 형성된 Al/Ti박막의 우선방위 비교)

  • 유세훈;김영호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.37-42
    • /
    • 2000
  • The comparative study of texture of Al/Ti thin films deposited on low-dielectric polymer and $SiO_2$substrates has been investigated. Fifty-nm-thick Ti films and 500-nm-thick Al-1%Si-0.5%Cu (wt%) films were deposited sequentially onto low-k polymers and $SiO_2$by using a DC magnetron sputtering system. The texture of Al thin film was determined using X-ray diffraction (XRD) theta-2theta ($\theta$-2$\theta$) and rocking curve and the microstructure of Al/Ti films on low-k polymer and $SiO_2$substrates was characterized by cross-sectional transmission electron microscopy (TEM). Both the $\theta$-2$\theta$ method and rocking curve measurement suggest that Al/Ti thin films deposited on $SiO_2$have stronger texture than those deposited on low-k polymer. The texture of Al thin films strongly depended on that of Ti films. Cross-sectional TEM revealed that grains of Ti films on $SiO_2$substrates had grown perpendicular to the substrate, while the grains of Ti alms on SiLK substrates were formed randomly. The lower degree of (111) texture of Al thin films on low-k polymer was due to Ti underlayer.

  • PDF

Micro/Millimeter-Wave Dielectric Indialite/Cordierite Glass-Ceramics Applied as LTCC and Direct Casting Substrates: Current Status and Prospects

  • Ohsato, Hitoshi;Varghese, Jobin;Vahera, Timo;Kim, Jeong Seog;Sebastian, Mailadil T.;Jantunen, Heli;Iwata, Makoto
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.526-533
    • /
    • 2019
  • Indialite/cordierite glass-ceramics demonstrate excellent microwave dielectric properties such as a low dielectric constant of 4.7 and an extremely high quality factor Qf of more than 200 × 103 GHz when crystallized at 1300℃/20 h, which are essential criteria for application to 5G/6G mobile communication systems. The glass-ceramics applied to dielectric resonators, low-temperature co-fired ceramic (LTCC) substrates, and direct casting glass substrates are reviewed in this paper. The glass-ceramics are fabricated by the crystallization of glass with cordierite composition melted at 1550℃. The dielectric resonators are composed of crystallized glass pellets made from glass rods cast in a graphite mold. The LTCC substrates are made from indialite glass-ceramic powder crystallized at a low temperature of 1000℃/1 h, and the direct casting glass-ceramic substrates are composed of crystallized glass plates cast on a graphite plate. All these materials exhibit excellent microwave dielectric properties.