Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.6.01

Micro/Millimeter-Wave Dielectric Indialite/Cordierite Glass-Ceramics Applied as LTCC and Direct Casting Substrates: Current Status and Prospects  

Ohsato, Hitoshi (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu)
Varghese, Jobin (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu)
Vahera, Timo (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu)
Kim, Jeong Seog (Department of Material Science and Engineering, Hoseo University)
Sebastian, Mailadil T. (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu)
Jantunen, Heli (Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu)
Iwata, Makoto (Department of Physical Science and Engineering, Nagoya Institute of Technology)
Publication Information
Abstract
Indialite/cordierite glass-ceramics demonstrate excellent microwave dielectric properties such as a low dielectric constant of 4.7 and an extremely high quality factor Qf of more than 200 × 103 GHz when crystallized at 1300℃/20 h, which are essential criteria for application to 5G/6G mobile communication systems. The glass-ceramics applied to dielectric resonators, low-temperature co-fired ceramic (LTCC) substrates, and direct casting glass substrates are reviewed in this paper. The glass-ceramics are fabricated by the crystallization of glass with cordierite composition melted at 1550℃. The dielectric resonators are composed of crystallized glass pellets made from glass rods cast in a graphite mold. The LTCC substrates are made from indialite glass-ceramic powder crystallized at a low temperature of 1000℃/1 h, and the direct casting glass-ceramic substrates are composed of crystallized glass plates cast on a graphite plate. All these materials exhibit excellent microwave dielectric properties.
Keywords
Microwave and Millimeter-wave dielectrics; Indialite/cordierite glass ceramics; Surface crystal growth; Volume crystallization; Direct casting glass ceramic substrate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ministry of Internal Affairs and Communications in Japan, http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h30/html/nd133420.html. Accessed on 26/11/2019.
2 ITU towards "IMT for 2020 and beyond", https:// www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/ Pages/default.aspx. Accessed on 26/11/2019.
3 S. Suzuki and M. Asada, "Terahertz Wireless Communications using Electronic Devices"; pp. 195-98 in Proceedings of the MWE2014 Microwave Workshops Digest, 2014.
4 H. Ohsato, "Millimeter-Wave Materials," pp. 203-59 in Microwave Materials and Applications, Vol. 1, Ed. by M. T. Sebastian, R. Ubic, and H. Jantunen, Wiley, New York, 2017.
5 H. Ohsato, "Microwave Dielectrics with Perovskite-Type Structure," pp. 281-330 in Perovskite Materials-Synthesis, Characterization, Properties, and Applications, Ed. by L. Pan, G. Zhu, INTECH, Rijeka, 2016.
6 M. T. Sebastian Dielectric Materials for Wireless Communication; Elsevier, Amsterdam 2008.
7 M. T. Sebastian, R. Ubic, and H. Jantunen, "Low-Loss Dielectric Ceramic Materials and Their Properties," Int. Mater. Rev., 60 [7] 392-412 (2015).   DOI
8 Y. Guo, H. Ohsato, and K. Kakimoto, "Characterization and Dielectric Behavior of Willemite and $TiO_2$-doped Willemite Ceramics at Millimeter-Wave Frequency," J. Eur. Ceram. Soc., 26 [10] 1827-30 (2006).   DOI
9 H. Ohsato, "Microwave Materials with High Q and Low Dielectric Constant for Wireless Communications," MRS Proc., 833 55-62 (2005).
10 H. Ohsato, M. Ando, and T. Tsunooka, "Synthesis of Forsterite with High Q and Near Zero TCf for Microwave/ Millimeterwave Dielectrics," J. Korean Ceram. Soc., 44 [11] 597-606 (2007).   DOI
11 H. Ohsato, T. Tsunooka, T. Sugiyama, K. Kakimoto, and H. Ogawa, "Forsterite Ceramics for Millimeterwave Dielectrics," J. Electroceram., 17 [2-4] 445-50 (2006).   DOI
12 L. Pauling, "The Nature of Silicon-Oxygen Bonds," Am. Mineral., 65 321-23 (1980).
13 G. V. Gibbs, "The Polymorphism of Cordierite I: the Crystal Structure of Low Cordierite," Am. Mineral., 51 1068-87 (1966).
14 M. Terada, K. Kawamura, I. Kagomiya, K. Kakimoto, and H. Ohsato, "Effect of Ni Substitution on the Microwave Dielectric Properties of Cordierite," J. Eur. Ceram. Soc., 27 [8-9] 3045-48 (2007).   DOI
15 H. Ohsato, M. Terada, I. Kagomiya, K. Kawamura, K. Kakimoto, and E. S. Kim, "Sintering Conditions of Cordierite for Microwave/Millimeterwave Dielectrics," IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 55 [5] 1082-85 (2008).
16 H. Ohsato, I. Kagomiya, M. Terada, and K. Kakimoto, "Origin of Improvement of Q Based on High Symmetry Accompanying Si-Al Disordering in Cordierite Millimeter-Wave Ceramics," J. Eur. Ceram. Soc., 30 [2] 315-18 (2010).   DOI
17 J. Varghese, T. Vahera, H. Ohsato, M. Iwata, and H. Jantunen, "Novel Low-Temperature Sintering Ceramic Substrate based on Indialite/Cordierite Glass Ceramics," Jpn. J. Appl. Phys., 56 [10S] 10PE01 (2017).   DOI
18 H. Ohsato, J. S. Kim, A. Y. Kim, C. I. Cheon, and K. W. Chae, "Millimeter-Wave Dielectric Properties of Cordierite/ Indialite Glass Ceramics," Jpn. J. Appl. Phys., 50 [9S2] 09NF01 (2011).   DOI
19 T. Tsunooka, H. Sugiura, Y. Higashida, T. Fukui, H. Okawa, and Y. Iwata, "Low-Permittivity Ceramic Dielectrics," JFCC Rev., 4 72-81 (1992).
20 H. Ohsato, J. S. Kim, C. I. Cheon, and I. Kagomiya, "Millimeter-Wave Dielectrics of Indialite/Cordierite Glass Ceramics: Estimating Si/Al Ordering by Volume and Covalency of Si/Al Octahedron," J. Ceram. Soc. Jpn., 121 [1416] 649-54 (2013).   DOI
21 H. Ohsato, J. Varghese, A. Kan, J-S. Kim, I. Kagomiya, H. Ogawa, M. T. Sebastian, and H. Jantunen, "Volume Crystallization and Improved TCf of Indialite/Cordierite Glass Ceramics by $TiO_2$ Addition," J. Ceram. Soc. Jpn., in preparation.
22 H. Ohsato, J.-S. Kim, C.-I. Cheon, and I. Kagomiya, "Crystallization of Indialite/Cordierite Glass Ceramics for Millimeter-Wave Dielectrics," Ceram. Int., 41 S588-95 (2015).   DOI
23 Fullprof Software by Juan Rodriguez-Carvajal in France, http://www-llb.cea.fr/fullweb/powder.htm. Accessed on 26/11/2019.
24 I. Ogata, K. Mizutani, K. Makino, and Y. Kobayashi, "Analysis of the Low Thermal Expansion Mechanism of Preferably Oriented (in Japanese)," DENSO Tech. Rev., 13 112-18 (2008).
25 B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range," IEEE Trans. Microwave Theory Tech., 8 [4] 402-10 (1960).   DOI
26 Y. Kobayasi and M. Kato, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Resonator Method," IEEE Trans. Microwave Theory Tech., 33 [7] 586-92 (1985).   DOI
27 "Split Post Dielectric Resonators for Dielectric Measurements of Substrates", Agilent Application Note 5989-5384EN, 2006.
28 I. Kagomiya and H. Ohsato, "Crystallized Glass Ceramic Dielectrics for High Frequency"; Japanese Patent Application No.2014-164285, 2014.
29 R. E. Mistler and E. R. Twiname, Tape Casting: Theory and Practice; American Ceramic Society, Westerville, OH, 2000.
30 H. Ohsato, "Practicing Applied Mineralogy on the Electroceramics - Examples: Microwave and Millimeter-Wave Dielectrics," Jpn. Mag. Mineral. Petrol. Sci., 47 [1] 43-50 (2018).
31 Y. T. Fei, S. J. Fan, R. Y. Sun, and M. Ishii, "Study on Phase Diagram of $Bi_2O_3-SiO_2$ System for Bridgman Growth of $Bi_4Si_3O_{12}$ Single Crystal," Prog. Cryst. Growth Charact. Mater., 40 [1-4] 183-88 (2000).   DOI