• Title/Summary/Keyword: Substrate recycling

Search Result 102, Processing Time 0.026 seconds

Fruitbody Development of Pleurotus ostreatus via Bottle Cultivation Using Recycled Substrate

  • Jo, Woo-Sik;Kim, Jong-Soo;Cho, Doo-Hyun;Park, So-Deuk;Jung, Hee-Young
    • Mycobiology
    • /
    • v.36 no.3
    • /
    • pp.157-160
    • /
    • 2008
  • This study was carried out to determine the possibility of bottle cultivation utilizing recycled oyster mushroom culture waste as a cultivating substrate for P. ostreatus. Total nitrogen percentage was 0.76%, 1.13%, 1.16%, 1.36%, and 1.38% in the 1-, 2-, 3-, 4-, and 5-time mixed substrate, respectively; 0.95%, 1.04%, 1.34%, 1.36%, and 1.25% in the 1-, 2-, 3-, 4-, and 5-time postharvest substrate, respectively; and 0.72% and 0.68% in the 2- and 3-time nonadditive substrate, respectively. Weight of the fresh fruiting body harvest was 115 g, 120 g, 117 g, 118 g, and 114 g on 1-, 2-, 3-, 4-, and 5-time mixed substrate, respectively; and 105 g and 45 g on 2- and 3-time nonadditive substrate, respectively. The first mixed substrate (fresh) and recycled substrates generated no significant difference in the weight of fresh fruiting bodies harvested.

마이크로 블라스터를 이용한 태양전지용 재생웨이퍼에 관한 연구

  • Lee, Yun-Ho;Gong, Dae-Yeong;Jeong, Sang-Hun;Kim, Sang-Won;Kim, Dong-Hyeon;Seo, Chang-Taek;Jo, Chan-Seop;Lee, Jong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.276-276
    • /
    • 2009
  • Solar cells has been studied mainly the high efficiency and lower prices. Using recycling wafer as a way to realize their money in it, there is a way to manufacture a solar cell substrate. How to play the recycling wafer, CMP(Chemical Mechanical Polishing) and remelting process is the complex and the expensive equipment. However, using the Micro-Blaster, the process easier, and cheaper prices. Micro-Blaster confirmed that the remaining amount of material left after the process recycling wafer surface.

  • PDF

Recycling Marine Fish Farm Effluent by Microorganisms (유용미생물을 이용한 육상수조식 양식장 배출물의 재활용)

  • 문상욱;이준백;이영돈;김세재;강봉조;고유봉
    • Journal of Aquaculture
    • /
    • v.15 no.4
    • /
    • pp.261-266
    • /
    • 2002
  • The effluent sediment from the land-based seawater fish farms of Jeju consists of proteins, fats, ash and moisture. An evaluation of the effluent sediment as substrate for growth of phototrophic or lactic acid bacteria revealed that the sediment supported the growth of phototrophic bacteria but could support lactic acid bacteria only on supplementation with sugar. The possibility of using phototrophic bacteria for recycling the land-based seawater fish farm effluent is shown.

Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials(III) - Recycling and Reutilization of Cellulase Enzyme - (목질 재료의 자기가수분해 및 효소당화에 관한 연구 (Ⅲ) - Cellulase 효소의 회수 및 재사용 -)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.45-51
    • /
    • 1989
  • A major problem in the enzymatic hydrolysis of lignocellulosic substrates is the very strong bonding of cellulase to lignin and even cellulose in the hydrolysis residues. This phenomenon inhibits recycle of the cellulase which is a major expense of the enzymatic hydrolysis process. In this paper, autohydrolyzed wood was delignified by two-stage with a 0.3% Na OH extraction and oxygen-alkali bleaching and was subjected to enzymatic hydrolysis with cellulase. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method. the first recycling showed relatively high hydrolysis rate of 97.4%. Even at the third recycle. hydrolysis rate was 86.7 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted very high hydrolysis rate(97.0-97.7%). Even the third recycling showed about 94.2%. Authoydrolysis of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a substrate for enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels(III) - Quantitative Recycling of Cellulase Enzyme in the Enzymatic Hydrolysis of Steam-Exploded Woods - (대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究) (III) - 폭쇄(爆碎)처리재의 산소분해시(酸素分解時) Cellulase 산소(酸素)의 정량적(定量的) 회수(回收)에 관하여 -)

  • Cho, Nam-Seok;Lim, Chang-Suk;Lee, Jae-Sung;Park, Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 1991
  • Steam-exploded woods were delignified by two-stage with a 0.3% NaOH extraction and oxygen-alkali bleaching and were subjected to the enzymatic hydrolysis with cellulase enzyme. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method, The first recycling showed relatively high hydrolysis rate of 96.4%. Even at the third recycle, hydrolysis rate was 87.0 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted in very high hydrolysis rates, 96.8% and 95.0%, respectively. Even the third recycling showed about 93.6%. Steam-explosion treatment of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a excellant substrate for the enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Nutrient Recycling : The North American Experience - Review -

  • Fontenot, J.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.642-650
    • /
    • 1999
  • Options available for utilization of animal wastes include sources of plant nutrients, feed ingredients for farm animals, substrate for methane generation, and substrate for microbial and insect protein synthesis. The wastes have the most economic value for use as animal feed. Performance of animals fed diets containing animal wastes is similar to that of animals fed conventional diets. Processing of animal wastes to be used as animal feed is necessary for destruction of pathogens, improvement of handling and storage characteristics, and maintenance or enhancement of palatability. Feeding of animal waste has not adversely affected the quality and taste of animal products. In the USA copper toxicity has been reported in sheep fed high-copper poultry litter, but this is not a serious problem with cattle. Potential pathogenic microorganisms in animal wastes are destroyed by processing such as heat treatment, ensiling and deep stacking. Incidents of botulism, caused by Clostridium botulinum, have been reported in cattle in some countries, and this problem was caused by the presence of poultry carcasses in litter. This problem has not occurred in the USA. With appropriate withdrawal, heavy metal, pesticide or medicinal drug accumulation in edible tissues of animals fed animal wastes is not a problem. Feeding of animal wastes is regulated by individual states in the USA. The practice is regulated in Canada, also. With good management, animal wastes can be used safely as animal feed.

Study on the Optimization of Substrate and COD-reduction in the Cultivation of Yeast Candida rugosa in Sugar Beet Stillages (사탕무알콜증류폐액을 기질로 Candida rugosa 효모균체를 생산할 때 기질의 최적화와 COD감소에 대한 연구)

  • Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.3
    • /
    • pp.119-125
    • /
    • 2004
  • Sugar beet stillages were used as a substrate for the production of single cell protein by a thermotolerant yeast Candida rugosa. 3 Stillage substrates were nutritionally optimized for the better production of yeast biomass and for the reduction of COD. The addition of Phosphorus(P) was required for all stillages, but Nitrogen(N) only when the residual sugar remained. The addition of P increased the biomass production to 23-61%. The addition of N increased the biomass production only a little, but when added together with P increased to 90%. The COD decreased to 26-46% when P was added, but decreased to 85% when P was added together with N.

  • PDF

A Unified Voltage Generator Which Merges the Pumping Capacitor of Boosted Voltage Generator and Substrate Voltage Generator (내부 승압 전원 발생기와 기판 인가 전원 발생기의 펌핑 수단을 공유한 전원 전압 발생기)

  • 신동학;장성진;전영현;이칠기
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.45-53
    • /
    • 2003
  • This paper describes a Unified Voltage Generator that merges the pumping capacitors of boosted voltage generator (VPP) and substrate voltage generator (VBB) for DRAM. This unified voltage generator simultaneously supplies VPP and VBB voltages by using one pumping capacitor and one oscillator. The proposed generator is realized by 0.14${\mu}{\textrm}{m}$DRAM process. The generator reduces the power consumption to 30%, the area of total generator to 40% and the area of pumping capacitor to 29.6%, and improves the pumping efficiency to 13.2% at 2.0V supply voltage. In addition, the generator adopts the charge recycling technique for precharging the pumping capacitor during the period of precharge, thatcan reduces the precharge current to 75%.

Optimization of growth conditions for cultivation of Phellinus linteus mycelia using swine waste as a growth substrate (돈분뇨를 기질로 활용한 고부가 가치 상황버섯 균사체 배양조건 최적화 연구)

  • Koo, Taewoan;Lee, Joonyeob;Cho, Kyungjin;Lee, Jangwoo;Shin, Seung Gu;Hwang, Seokhwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • Newly, nutrients recovery by bioconversion in the swine waste which caused serious problems due to its high organic fraction and content of nutrients such as phosphorus and nitrogen is viewed as a considerable approach since it produces valuable product as well as recycling of resources. Consequently, it is necessary to find new methods to treat swine waste. One possible solution to this problem is to use this potential pollutant as a growth substrate for economically valuable products. The study for the fundamental improvement of bioconversion efficiency by finding optimum growth conditions using statistical models and biotechnology was performed. A novel approach to utilize swine waste by cultivating mycelia of the mushroom Phellinus linteus are described. A central composite face-centered design (CCF) for the experiments was used to develop empirical model providing a quantitative interpretation of the relationships among the three variables, which were substrate concentration, pH, and temperature. The maximal radial extension rate (2.78mm/d) of P.linteus was determined under the condition of 5.0 g COD/L, pH 5.0, and temperature $29.7^{\circ}C$. The results of this study suggest that swine waste could be utilized as a growth substrate for the cultivation of mushroom mycelia enhancing an efficiency of utilizing this by-product of the livestock industry.

Effect of substrate concentration on the operating characteristics of microbial electrolysis cells (기질 농도에 따른 미생물전기분해전지의 운전 특성)

  • Hwijin Seo;Jaeil Kim;Seo Jin Ki;Yongtae Ahn
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.4
    • /
    • pp.41-49
    • /
    • 2023
  • This study examined the effect of input substrate concentration on hydrogen production of microbial electrolysis cells. To compare the performance of MEC according to the input substrate concentration, six laboratory-scale MEC reactors were operated by sequentially increasing the input substrate concentration from 2 g/L of sodium acetate, to 4 g/L, and 6 g/L. The current density, hydrogen production, and SCOD removal rate were analyzed, and energy efficiency and cathodic hydrogen recovery were calculated to compare the performance of MEC. The maximum volumetric current density was obtained at 4 g/L condition (76.3 A/m3) and it decreased to 19.0 A/m3, when the input concentration was increased to 6 g/L, which was a 75% decrease compared to the 4 g/L input condition. Maximum hydrogen production was obtained also at 4 g/L condition (47.3 ± 16.8 mL), but maximum hydrogen yield was obtained at 2 g/L input condition (1.1 L H2/g CODin). Energy efficiencies were also highest in 2 g/L condition; the lowest result was observed at 6 g/L condition. Maximum electrical energy efficiency was 76.4%, and the maximum overall energy efficiency was 39.7% at 2 g/L condition. However, when the substrate concentration increased to 6 g/L, the performance was drastically decreased. Cathodic hydrogen recovery also showed a similar tendency with energy efficiency, with the lowest concentration condition showing the best performance. It can be concluded that operating at low input substrate concentration might be better when considering not only hydrogen yield but also energy efficiency.