• Title/Summary/Keyword: Subspace

Search Result 743, Processing Time 0.027 seconds

MAXIMUM SUBSPACES RELATED TO A-CONTRACTIONS AND QUASINORMAL OPERATORS

  • Suciu, Laurian
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.205-219
    • /
    • 2008
  • It is shown that if $A{\geq}0$ and T are two bounded linear operators on a complex Hilbert space H satisfying the inequality $T^*\;AT{\leq}A$ and the condition $AT=A^{1/2}TA^{1/2}$, then there exists the maximum reducing subspace for A and $A^{1/2}T$ on which the equality $T^*\;AT=A$ is satisfied. We concretely express this subspace in two ways, and as applications, we derive certain decompositions for quasinormal contractions. Also, some facts concerning the quasi-isometries are obtained.

INTERPOLATION PROBLEMS IN ALGL

  • JO YOUNG SOO;KANG JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.513-524
    • /
    • 2005
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. Let L be a subspace lattice on H. We obtained a necessary and sufficient condition for the existence of an interpolating operator A which is in AlgL.

INVERTIBLE INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.359-365
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. In this article, we investigate invertible interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H and x and y be vectors in H. When does there exist an invertible operator A in AlgL suth that An = ㅛ?

ON SPECTRAL SUBSPACES OF SEMI-SHIFTS

  • Han, Hyuk;Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.247-257
    • /
    • 2008
  • In this paper, we show that for a semi-shift the analytic spectral subspace coincides with the algebraic spectral subspace. Using this result, we have the following result. Let T be a decomposable operator on a Banach space ${\mathcal{X}}$ and let S be a semi-shift on a Banach space ${\mathcal{Y}}$. Then every linear operator ${\theta}:{\mathcal{X}}{\rightarrow}{\mathcal{Y}}$ with $S{\theta}={\theta}T$ is necessarily continuous.

  • PDF

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1131-1141
    • /
    • 2010
  • We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner.

The DOA Estimation of Wide Band Moving Sources

  • Cho, Mun-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • In this paper, a new method is proposed for tracking the direction-of-arrival (DOA) of the wideband moving source incident on uniform linear array sensors. DOA is estimated by focusing transformation matrices. To update focusing matrices along with new data snap shots, we use the FAST (Fast Approximate Subspace Tracking) method. Present focusing matrices are constructed by previous signal and its orthogonal basis vectors as well as present signal and its orthogonal basis vectors, which are the left and right singular vectors of the inner product of two approximated matrices. Simulation results are shown to illustrate the performance of the proposed method.

NORMAL INTERPOLATION PROBLEMS IN ALGL

  • Jo, Young-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.691-700
    • /
    • 2004
  • Let X and Y be operators acting on a Hilbert space and let (equation omitted) be a subspace lattice of orthogonal projections on the space containing 0 and I. We investigate normal interpolation problems in Alg(equation omitted): Given operators X and Y acting on a Hilbert space, when does there exist a normal operator A in Alg(equation omitted) such that AX = Y?

GENERALIZED INTERTWINING LINEAR OPERATORS WITH ISOMETRIES

  • Hyuk Han
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.13-23
    • /
    • 2023
  • In this paper, we show that for an isometry on a Banach space the analytic spectral subspace coincides with the algebraic spectral subspace. Using this result, we have the following result. Let T be a bounded linear operator with property (δ) on a Banach space X. And let S be an isometry on a Banach space Y . Then every generalized intertwining linear operator θ : X → Y for (S, T) is continuous if and only if the pair (S, T) has no critical eigenvalue.