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ON SPECTRAL SUBSPACES OF SEMI–SHIFTS

Hyuk Han* and Jong-Kwang Yoo**

Abstract. In this paper, we show that for a semi-shift the analytic spec-
tral subspace coincides with the algebraic spectral subspace. Using this
result, we have the following result. Let T be a decomposable operator on a
Banach space X and let S be a semi-shift on a Banach space Y. Then every
linear operator θ : X → Y with Sθ = θT is necessarily continuous.

1. Preliminaries

Throughout this paper we shall use the standard notions and some ba-

sic results on the theory of local spectral theory and automatic continuity

theory. Let X be a Banach space over the complex plane C. And let L(X )

denote the Banach algebra of all bounded linear operators on a Banach space

X . Given an operator T ∈ L(X ), Lat(T ) denotes the collection of all closed

T -invariant linear subspaces of X , and for an Y ∈ Lat(T ), T |Y denotes the

restriction of T on Y.

Definition 1. Let T : X → X be a linear operator on a Banach space

X . Let F be a subset of the complex plane C. Consider the class of all

linear subspaces Y of X which satisfy (T −λ)Y = Y for all λ /∈ F , let ET (F )

denote the algebraic linear span of all such subspaces Y of X . Equivalently,

we may define ET (F ) as maximal among all linear subspaces Y of X for

which (T − λ)Y = Y for which λ /∈ F . ET (F ) is called an algebraic spectral

subspace of T .

We always have that

ET (A) ⊆
⋂

λ/∈A,n∈N
(T − λ)nX
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and sometimes the equality holds.

In the next proposition, we collect a number of results on algebraic spec-

tral subspaces. These results are found in [6].

Proposition 2. Let T be a linear operator on a Banach space X and

let F ⊆ C. Then the following assertions hold:

(1) ET (F ) is a hyperinvariant subspace, that is, for any bounded linear

operator S : X → X for which ST = TS we have SET (F ) ⊆ ET (F ).

(2) ET (F ) = ET (F ∩ σ(T )).

(3) ET (F ) is absorbent, that is, if λ ∈ A and (T − λ)x ∈ ET (F ) for some

x ∈ X , then x ∈ ET (F ). In particular, ker(T −λ) ⊆ ET (F ) for every λ ∈ A.

(4) ET (
⋂

Fα) =
⋂

ET (Fα) for any family of subsets {Fα : α ∈ A} of C. In

particular, if F1 ⊆ F2, then ET (F1) ⊆ ET (F2).

A linear subspace Z of X is called a T -divisible subspace if

(T − λ)Z = Z for all λ ∈ C.

Hence ET (∅) is precisely the largest T -divisible subspace. There exists a

compact and quasi-nilpotent operator T on a Banach space X such that T

has a non-trivial divisible subspace.

Example. Let X = C[0, 1] be the complex valued continuous functions

on unit interval [0, 1] with pointwise addition, pointwise multiplications and

supremum norm. And let T ∈ L(X ) denote the Volterra operator defined

by

(Tf)(s) =
∫ s

0

f(t)dt for all f ∈ C[0, 1] and s ∈ [0, 1].

Then T is both compact and quasi-nilpotent. But T has the following non-

trivial divisible subspace

Y = {f ∈ C∞[0, 1] : f (k)(0) = 0 for all k = 0, 1, . . . }.

On the other hand, many important operators do not have non trivial

divisible subspaces. For example, hyponormal operators on Hilbert spaces

do not have non-trivial divisible subspaces.
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For a given T ∈ L(X ), let σ(T ), σp(T ) and ρ(T ) denote the spectrum, the

point spectrum and the resolvent set of T , respectively. The local resolvent

set ρT (x) of T at the point x ∈ X is defined as the union of all open subsets

U of C for which there is an analytic function f : U → X which satisfies

(T − λ)f(λ) = x for all λ ∈ U . The local spectrum σT (x) of T at x is then

defined as

σT (x) = C \ ρT (x).

Clearly, the local resolvent set ρT (x) is open, and the local spectrum σT (x)

is closed. For each x ∈ X , the function f(λ) : ρ(T ) → X defined by

f(λ) = (T − λ)−1x is analytic on ρ(T ) and satisfies (T − λ)f(λ) = x for

all λ ∈ ρ(T ). Hence the resolvent set ρ(T ) is always subset of ρT (x) and

hence σT (x) is always subset of σ(T ). The analytic solutions occurring in

the definition of the local resolvent set may be thought of as local extensions

of the function (T − λ)−1x : ρ(T ) → X . There is no uniqueness implied.

Thus we need the following definition. An operator T ∈ L(X ) is said to

have the single-valued extension property, abbreviated SVEP, if for every

open set U ⊆ C, the only analytic solution f : U → X of the equation

(T − λ)f(λ) = 0 for all λ ∈ U is the zero function on U . Hence if T has

the SVEP, then for each x ∈ X there is the maximal analytic extension of

(T − λ)−1x on ρT (x).

For a closed subset F of C, XT (F ) = {x ∈ X : σT (x) ⊆ F} is said to be an

analytic spectral subspace of T . It is easy to see that XT (F ) is a hyperinvari-

ant subspace of X , while generally not closed. Analytic spectral subspaces

have been fundamental in the recent progress of local spectral theory, for

instance in connection with functional models and invariant subspaces and

also in the theory of spectral inclusions for operators on Banach spaces.

In the next proposition, we collect a number of results on analytic spectral

subspaces. These results are found in [6].

Proposition 3. Let T be a bounded linear operator on a Banach space

X and let F ⊆ C. Then the following assertions hold:



250 Hyuk Han and Jong-Kwang Yoo

(1) XT (F ) = XT (F ∩ σ(T )).

(2) For all λ /∈ F , (T − λ)XT (F ) = XT (F ). This implies that XT (F ) ⊆
ET (F ) for all F ⊆ C.

(3) If {Fα} is a family of subsets of C, then XT (∩Fα) = ∩XT (Fα).

(4) T has the SVEP if and only if XT (∅) = {0}.

Let θ be a linear operator from a Banach space X into a Banach space

Y. The space

S(θ) = {y ∈ Y : there is a sequence xn → 0 in X and θxn → y}

is called the separating space of θ. It is easy to see that S(θ) is a closed

linear subspace of Y. By the closed graph theorem, θ is continuous if and

only if S(θ) = {0}. The following lemma is found in [9].

Lemma 4. Let X and Y be Banach spaces. If R is a continuous linear

operator from Y to a Banach space Z, and if θ : X → Y is a linear operator,

then (RS(θ))− = S(Rθ). In particular, Rθ is continuous if and only if

RS(θ) = {0}.

The next lemma states that a certain descending sequence of separating

space which obtained from θ via a countable family of continuous linear

operators is eventually constant. It is proved in [9].

Stability Lemma. Let θ : X0 → Y be a linear operator between the Ba-

nach spaces X0 and Y with separating space S(θ), and let 〈Xi : i = 1, 2, . . . 〉
be a sequence of Banach spaces. If each Ti : Xi → Xi−1 is continu-

ous linear operator for i = 1, 2, . . . , then there is an n0 ∈ N for which

S(θT1T2 . . . Tn) = S(θT1T2 . . . Tn0) for all n ≥ n0.

An operator T ∈ L(X ) is called decomposable if, for every open cover-

ing {U, V } of the complex plane C, there exist Y,Z ∈ Lat(T ) such that

σ(T |Y) ⊆ U , σ(T |Z) ⊆ V and Y+Z = X . Decomposable operators are rich.

For example, normal operators, spectral operators in the sense of Dunford,
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operators with totally disconnected spectrums and hence compact operators

are decomposable.

Given a topological space Ω and a topological vector space X , we denote

by F(Ω) the collection of all closed subsets of Ω, and by S(X ) the collection

of all closed linear subspaces of X . A mapping E(·) : F(Ω) → S(X ) is said to

be a precapacity if E(∅) = {0} and E(F ) ⊆ E(G) for all closed sets F, G ⊆ Ω

with F ⊆ G. Given a precapacity E(·) : F(Ω) → S(X ), we say that E(·) is

decomposable if

X = E(U) + E(V ) for every open cover {U, V } of Ω,

and that E(·) is stable if arbitrary intersections are preserved, that is,

E(
⋂

Fα) =
⋂
E(Fα)

for every family of closed subsets {Fα : α ∈ A} of Ω. A stable map is called

a spectral capacity if E(·) satisfies the following condition:

X =
∑
α

E(Gα) for every finite open cover {Gα : α ∈ A} of C.

If Ω is second countable, then it follows easily from Lindelöf’s covering theo-

rem that a precapacity on F(Ω) is stable whenever intersections of countable

families of closed sets are preserved. We say that E(·) is order preserving if

it preserves the inclusion order. Clearly a stable map is order preserving. It

is well known that T is decomposable if and only if there exists a spectral

capacity E(·) such that E(F ) ∈ Lat(T ) and σ(T |E(F )) ⊆ F for each closed

set F ⊆ C. In this case the spectral capacity of a closed subset F of C is

uniquely determined and it is the analytic spectral subspace XT (F ).

A typical example of stable precapacity is provided by

E(F ) = {f ∈ C(Ω) : supp(f) ⊆ F} for all closed sets F ⊆ Ω,

where supp(f) is the support of the function f and C(Ω) is the space of

all continuous complex valued functions on Ω endowed with any vector
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space topology that is finer than the topology of pointwise convergence.

By Urysohn’s lemma, precapacity is decomposable if the topological space

Ω is normal.

The following lemma, known as localization of the singularities, has ap-

peared in various form. We adopted in [4].

Lemma 5. Let X and Y be Banach spaces. Suppose that EX : F(C) →
S(X ) is an order preserving map such that X = EX (U) + EX (V ) whenever

{U, V } is an open cover of C. And suppose that EY : F(C) → S(Y ) is a

stable map. If θ : X → Y is a linear operator for which S(θ|EX (F )) ⊆ EY(F )

for every F ∈ F(C), then there is a finite set Λ ⊆ C for which S(θ) ⊆ EY(Λ).

The following theorem is a variation of the Mittag-Leffler Theorem of

Bourbaki. The theorem is found in [9].

Mittag-Leffler Theorem. Let 〈Xn : n = 0, 1, 2, . . . 〉 be a sequence

of complete metric spaces, and for n = 1, 2, . . . , let fn : Xn → Xn−1 be a

continuous map with fn(Xn) dense in Xn−1. Let gn = f1 ◦ · · · ◦ fn. Then⋂∞
n=1 gn(Xn) is dense in X0.

2. Intertwiners with decomposable operators and semi-shifts

An isometry T on a Banach space X is said to be a semi-shift if

∞⋂
n=1

TnX = {0}.

Evidently, a semi-shift on a non trivial Banach space is a non invertible isom-

etry. And it is well known that non invertible isometry is not decomposable

but has the single-valued extension property.[6] Hence every semi-shift can

not be decomposable and has the single valued extension property. Natural

examples of semi-shifts include, for any 1 ≤ p ≤ ∞, the unilateral right shift

operators of arbitrary multiplicity on the sequence space `p(N) as well as the

right translation operators on the Lebesgue spaces Lp(R+) on the positive

half line R+ = [0,∞).
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Proposition 6. Let T be a semi-shift on a Banach space X . Then T

has no eigenvalues.

Proof. Let T be a semi-shift on a Banach space X . And let Tx = λx

for some x ∈ X and λ ∈ C. Then Tnx = λnx for each n ∈ N. Hence

λnx ∈ TnX . Since TnX is a linear subspace of X , x ∈ TnX for all n ∈ N.

Therefore we have,

x ∈
∞⋂

n=1

TnX = {0}.

Hence T has no eigenvalue. ¤

The following proposition is in [6].

Proposition 7. Let T be a bounded linear operator on a Banach space

X . Suppose that ET (F ) is closed for all closed sets F ⊆ C. Then the

identity XT (F ) = ET (F ) holds for all closed sets F ⊆ C

We denote by C∞(C) the Fréchet algebra of all infinitely differentiable

complex valued functions ϕ(z), z = x1 + ix2, x1, x2 ∈ R, defined on the

complex plane C with the topology of uniform convergence of every deriva-

tive on each compact subset of C. That is, with the topology generated by

a family of pseudo-norm

|ϕ|K,m = max
|p|≤m

sup
z∈K

|Dpϕ(z)|,

where K is an arbitrary compact subset of C, m a non-negative integer,

p = (p1, p2), p1, p2 ∈ N, |p| = p1 + p2 and

Dpϕ =
∂|p|ϕ

∂x1
p1∂x2

p2
, z = x1 + ix2.

An operator T ∈ L(X ) is called a generalized scalar operator if there ex-

ists a continuous algebra homomorphism Φ : C∞(C) → L(X ) satisfying

Φ(1) = I, the identity operator on X , and Φ(z) = T where z denotes the

identity function on C. Such a continuous function Φ is in fact an operator

valued distribution and it is called a spectral distribution for T . The class
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of generalized scalar operators was introduced by Colojoarǎ and Foiaş [1].

Every linear operator on a finite dimensional space as well as every spectral

operator of finite type are generalized scalar operators. For more examples

and properties of generalized scalar operators one may refer to [1]. It is well

known that if T is invertible isometry then T is a generalized scalar operator.

For a generalized scalar operator it is well known that XT (F ) = ET (F ) for

all closed sets F ⊆ C. Hence if T is invertible isometry then XT (F ) = ET (F )

for all closed sets F ⊆ C. Moreover, the identity XT (F ) = ET (F ) holds on

an isometry.

Proposition 8. Let T be an isometry on a Banach space X . Then for

any closed set F of C,

XT (F ) = ET (F ).

In particular, for a semi-shift T the identity XT (F ) = ET (F ) holds for any

closed set F of C.

Proof. If T is an invertible isometry, then T is a generalized scalar oper-

ator. Hence The identity XT (F ) = ET (F ) holds for any closed set F of C.

Thus we may assume that T is a non invertible isometry. By Proposition

7, it is enough to show that ET (F ) is closed for any closed set F of C. Let

F ⊆ C be a given closed set. Suppose that there is a λ /∈ F with |λ| < 1.

If ET (F ) = {0} then the space ET (F ) is closed. Hence we may assume

that ET (F ) is non trivial. Let W = ET (F ). Since T − λ is bounded below,

(T − λ)(W) is closed. Therefore, we have

(T − λ)(W) = W.

Hence (T − λ)|W is invertible. And hence λ /∈ σ(T |W). It is well known

that for the spectrum of a non invertible isometry is the entire unit disk.

Since |λ| < 1, T |W can not to be a non invertible isometry. Hence T |W is

an invertible isometry. Thus ET |W(F ) is closed in W. Since W is closed,

ET |W(F ) is closed in X . It is clear that

ET |W(F ) = ET (F ) ∩W = ET (F ).
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Therefore, ET (F ) is closed in X . If there is no λ /∈ F with |λ| < 1, then

{λ ∈ C : |λ| < 1} ⊆ F . Since T is non invertible isometry,

σ(T ) = {λ ∈ C : |λ| ≤ 1} ⊆ F.

Therefore we have ET (F ) = X . Hence ET (F ) is closed in X . In any case

ET (F ) is closed for all closed F ⊆ C. ¤

Hence for an isometry, the above proposition allows us to combine the

analytic tools associated with the space XT (F ) with the algebraic tools

associated with the space ET (F ).

Let T and S be bounded linear operators on Banach spaces X and Y,

respectively. A linear operator θ : X → Y is said to be an intertwiner or

intertwining linear operator with T and S if Sθ = θT .

Proposition 9. Suppose that T has the single-valued extension prop-

erty on a Banach space X and that S is a semi-shift on a Banach space Y.

Then every linear transformation θ : X → Y with the property Sθ = θT

necessarily satisfies the following:

θXT (F ) ⊆ YS(F )

for all closed subsets F of C.

Proof. Let F be a given closed subset of C. Since XT (F ) ⊆ ET (F ),

θXT (F ) ⊆ θET (F ). For every λ /∈ F , we have

θET (F ) = θ(T − λ)ET (F ) = (S − λ)θET (F )

This shows that

θET (F ) ⊆ ES(F ).

By Proposition 8, ES(F ) = YS(F ), hence we have

θXT (F ) ⊆ YS(F ).

This completes the proof. ¤
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Theorem 10. Suppose that T is a decomposable operator on a Banach

space X and that S is a semi-shift on a Banach space Y. Then every linear

operator θ : X → Y for which θT = Sθ is necessarily continuous.

Proof. Consider an arbitrary linear operator θ : X → Y satisfying Sθ =

θT . To prove the continuity of θ, it suffices to construct a non-trivial poly-

nomial p such that p(S)S(θ) = {0}. Indeed if we do so, since S has no

eigenvalues, by Proposition 7, all factors S − λ of p(S) is injective, hence

we have

S(θ) = {0}.

From Proposition 9, we infer that θXT (F ) ⊆ YS(F ) for all closed subsets F

of C. Since XT (F ) is the spectral capacity and YS(F ) is stable, by Lemma

5, there is a finite set Λ of C such that S(θ) ⊆ YS(Λ). An application of the

Stability Lemma to the sequence T − λ, where λ ∈ Λ, yields a polynomial p

for which

S(θp(T )) = S(θp(T )(T − λ)) for every λ ∈ Λ.

Since θ intertwines T and S, this means that by Lemma 4

((S − λ)p(S)S(θ))− = (p(S)S(θ))− for every λ ∈ Λ.

If we apply Mittag-Leffler Theorem to the above identity then, there exists

a dense subspace W ⊆ (p(S)S(θ))− for which (S − λ)W = W for every

λ ∈ Λ. This means that W ⊆ ES(C \ Λ) by the definition of algebraic

spectral subspaces. Since W ⊆ S(θ) ⊆ ES(Λ), we obtain that

W ⊆ ES(Λ) ∩ ES(C \ Λ)

= ES(∅)
= YS(∅)
= {0}.

Therefore, we have W = {0}. Consequently, p(S)S(θ) = {0}. Hence θ is

continuous. ¤
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