• Title/Summary/Keyword: Subsonic flow

Search Result 220, Processing Time 0.02 seconds

Subsonic/Transonic Airfoil Design Using an Inverse Method (Inverse 기법을 이용한 아음속/천음속 익형 설계)

  • Lee Jae Woo;Lee Young-Ki;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.61-66
    • /
    • 1998
  • An inverse method for the subsonic and transonic airfoil design was developed using the Euler equations. Two testcases were performed. One was a design of the supercritical airfoil, aiming to be used for the Korean mid-sized (100 passengers class) transport aircraft. The other was the design of an airfoil showing a good cruising performance (L/D ratio) in the high subsonic/transonic flow regimes. These testcases demonstrated the efficiency and the robustness of the developed method.

  • PDF

Two-Dimensional Airfoil Characteristics under ground effect in Subsonic Turbulent Flow Regimes (아음속 난류 유동 영역에서 지면 효과를 갖는 2차원 에어포일의 특성)

  • Im Y. H.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.61-65
    • /
    • 1997
  • A two-dimensional airfoil under ground effect in subsonic turbulent flow is calculated by sieving the Navier-Stokes equation. Some numerical results for different NACA four-digit airfoils are presented. The numerical results show that the lift and drag coefficients are strongly influenced by the shape of the region between the lower surface of airfoil and the ground In general, the airfoil with large camber and small thickness is suitable for WIG vehicles

  • PDF

Subsonic/Transonic Airfoil Design Using an Inverse Method (Inverse 기법을 이용한 아음속/천음속 익형 설계)

  • Lee Young-Ki;Lee Jae-Woo;Byun Yung-Hwan
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • An inverse method for the subsonic and transonic airfoil design was developed using the Euler equations. Two testcases were performed. One was a verification of the method using the supercritical airfoil of the Korean mid-sized (100 passengers class) transport aircraft. The other was the design of an airfoil showing a good cruising performance (L/D ratio) in the high subsonic flow regime. These testcases demonstrated the efficiency and the robustness of the design method in the present study.

  • PDF

Analytical Study of the Subsonic/Sonic Ejector Flows (아음속/음속 이젝터의 유동에 관한 해석적 연구)

  • 최보규;김희동;김덕줄
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • In order to predict the performance of subsonic/sonic ejector system and to provide fundamental data for a cost effective design, one dimensional gas dynamics theory was applied to the subsonic and sonic ejector systems with the second throat. In the current theoretical analyses, ejector throat area ratio, mass flow ratio and secondary stagnation pressure were derived as a function of the operating pressure ratio of the ejector, and the discharge coefficient of the primary nozzle and the loss coefficient of the diffuser were incorporated into the whole performance of the ejector system. The results of theoretical analysis can be applied to practical industrial use of subsonic and sonic gas ejector systems.

  • PDF

CFD Model of the Base Flow on Axi-symmetric Nacelle Using Singularities (축대칭 나셀에서 특이점을 이용한 베이스 유동의 전산해석적인 모델)

  • Baik Doo Sung;Han Young Chool
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2001
  • Despite the massive effort which has been given to the analysis of the base flows, one commonly occurring case seems to be overlooked. This is for base (rearward facing surface) which is between a subsonic flow and supersonic flow. Potential flows of the air and gas streams are computed for the flow past a separated wake. Then a viscous jet mixing is superimposed on this inviscid solution. Conservation of mass, momentum and energy is achieved by multiple iterations. Despite the iterations, the wake flow field is computed with modest computer requirements.

  • PDF

Analysis on Two Parallel Flows in Convergent Channel (축소 유로내의 두 평행 유동에 대한 해석)

  • Kwon, Jin-Kyung;Kim, Tae-Wook;Kim, Jin-Hyun;Kim, Jae-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Compound flow by confluence of two parallel flows through a convergent channel and its choking phenomenon are calculated by one-dimensional isentropic model and completely mixing model. Optical observations and pressure measurements for subsonic/subsonic compound flows are carried out and compared with the results of one-dimensional calculations. As a result, it is found that inlet conditions of one flow influence the behavior of the other flow as well as the choking condition and present experimental data agree well with the results of one-dimensional calculations.

Prediction on The Base Pressure for An Axisymmetric Body (선대칭 형태에 있어서의 베이스 압력의 예측)

  • Baik, Doo-Sung;Han, Young-Chool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.491-496
    • /
    • 2000
  • The physics of the flow field surrounding an engine nacelle afterbody is very complex. A high pressure jet from the nozzle interacts with the external flow and causes upstream influence on the afterbody surface field. At certain conditions, the nozzle boundary layer can separate, either by shock wave interaction or by adverse pressure gradient effect, resulting in a severe drag penalty. Furthermore, a finite afterbody base implies a recirculating flow region. A flow modeling method has been developed to analyze the flow in the annular base(rear-facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhause jet. Real values of exhaust gas properties and temperature are included.

  • PDF

EDISON_CFD를 이용한 이중압축램프의 각도별 유동현상 비교

  • Lee, Won-Hong;Lee, Ji-Hun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.74-77
    • /
    • 2016
  • 본 연구에서는 Scream Jet Intake에 발생하는 충격파 경계층에서 속도를 Supersonic에서 Subsonic으로 줄였을 때의 상호작용을 EDISON_CFD로 해석하기로 한다. 이상적인 공기 유동에서 충격파 경계층의 각도를 $15^{\circ}{\sim}20^{\circ}$, $25^{\circ}{\sim}30^{\circ}$, $15^{\circ}{\sim}40^{\circ}$, $25^{\circ}{\sim}50^{\circ}$와 같이 두 개($5^{\circ}$, $25^{\circ}$)의 각도 차이를 두어 이중압축램프에서의 유동현상을 EDISON_CFD로 수행하고 분석하였다.

  • PDF

Planform Curvature Effects on the Stability of Coupled Flow/Structure Vibration (면내 곡률이 천음속 및 초음속 유체/구조 연계 진동 안정성에 미치는 영향)

  • Kim, Jong-Yun;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.864-872
    • /
    • 2002
  • In this study, the effect of planform curvature on the stability of coupled flow/structure vibration is examined in transonic and supersonic flow regions. The aeroelastic analysis for the frequency and time domain is performed to obtain the flutter solution. The doublet lattice method(DLM) in subsonic flow is used to calculate unsteady aerodynamics in the frequency domain. For all speed range, the time domain nonlinear unsteady transonic small disturbance code has been incorporated into the coupled-time integration aeroelastic analysis (CTIA). Two curved wings with experimental data have been considered in this paper MSC/NASTRAN is used for natural free vibration analyses of wing models. Predicted flutter dynamic pressures and frequencies are compared with experimental data in subsonic and transonic flow regions.

Spray Characteristics of Two-Phase Flow Jets into a Subsonic Crossflow (아음속 횡단류로 분사되는 이상유동 제트의 분무특성)

  • Lee, Keunseok;Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • An experimental study on the spray characteristics of aerated-liquid jets discharged from effervescent injectors to a subsonic crossflow was conducted to investigate effects of a gas to liquid mass ratio (GLR) and a ratio of the orifice length to the diameter (L/d). The present effervescent injectors consist of a plain orifice injector and an aerator. To analyze breakup length and spray trajectory, instantaneous spray images were taken by a high speed camera. As the GLR increased, the spray penetration became higher under the same liquid mass flow rate and the breakup length became shorter due to the bubble expansion or the annular liquid film breakup. To predict the spray trajectory of two-phase flow jets into the crossflow, the homogeneous and the separated flow models were compared.