• Title/Summary/Keyword: Subset number

Search Result 256, Processing Time 0.024 seconds

THE FORCING NONSPLIT DOMINATION NUMBER OF A GRAPH

  • John, J.;Raj, Malchijah
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • A dominating set S of a graph G is said to be nonsplit dominating set if the subgraph ⟨V - S⟩ is connected. The minimum cardinality of a nonsplit dominating set is called the nonsplit domination number and is denoted by ��ns(G). For a minimum nonsplit dominating set S of G, a set T ⊆ S is called a forcing subset for S if S is the unique ��ns-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing nonsplit domination number of S, denoted by f��ns(S), is the cardinality of a minimum forcing subset of S. The forcing nonsplit domination number of G, denoted by f��ns(G) is defined by f��ns(G) = min{f��ns(S)}, where the minimum is taken over all ��ns-sets S in G. The forcing nonsplit domination number of certain standard graphs are determined. It is shown that, for every pair of positive integers a and b with 0 ≤ a ≤ b and b ≥ 1, there exists a connected graph G such that f��ns(G) = a and ��ns(G) = b. It is shown that, for every integer a ≥ 0, there exists a connected graph G with f��(G) = f��ns(G) = a, where f��(G) is the forcing domination number of the graph. Also, it is shown that, for every pair a, b of integers with a ≥ 0 and b ≥ 0 there exists a connected graph G such that f��(G) = a and f��ns(G) = b.

WICK DERIVATIONS ON WHITE NOISE FUNCTIONALS

  • Chung, Dong-Myung;Chung, Tae-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.993-1008
    • /
    • 1996
  • The white noise analysis, initiated by Hida [3] in 1975, has been developed to an infinite dimensional distribution theory on Gaussian space $(E^*, \mu)$ as an infinite dimensional analogue of Schwartz distribution theory on Euclidean space with Legesgue measure. The mathematical framework of white noise analysis is the Gel'fand triple $(E) \subset (L^2) \subset (E)^*$ over $(E^*, \mu)$ where $\mu$ is the standard Gaussian measure associated with a Gel'fand triple $E \subset H \subset E^*$.

  • PDF

The Evaluation of Reconstructed Images in 3D OSEM According to Iteration and Subset Number (3D OSEM 재구성 법에서 반복연산(Iteration) 횟수와 부분집합(Subset) 개수 변경에 따른 영상의 질 평가)

  • Kim, Dong-Seok;Kim, Seong-Hwan;Shim, Dong-Oh;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Purpose: Presently in the nuclear medicine field, the high-speed image reconstruction algorithm like the OSEM algorithm is widely used as the alternative of the filtered back projection method due to the rapid development and application of the digital computer. There is no to relate and if it applies the optimal parameter be clearly determined. In this research, the quality change of the Jaszczak phantom experiment and brain SPECT patient data according to the iteration times and subset number change try to be been put through and analyzed in 3D OSEM reconstruction method of applying 3D beam modeling. Materials and Methods: Patient data from August, 2010 studied and analyzed against 5 patients implementing the brain SPECT until september, 2010 in the nuclear medicine department of ASAN medical center. The phantom image used the mixed Jaszczak phantom equally and obtained the water and 99mTc (500 MBq) in the dual head gamma camera Symbia T2 of Siemens. When reconstructing each image altogether with patient data and phantom data, we changed iteration number as 1, 4, 8, 12, 24 and 30 times and subset number as 2, 4, 8, 16 and 32 times. We reconstructed in reconstructed each image, the variation coefficient for guessing about noise of images and image contrast, FWHM were produced and compared. Results: In patients and phantom experiment data, a contrast and spatial resolution of an image showed the tendency to increase linearly altogether according to the increment of the iteration times and subset number but the variation coefficient did not show the tendency to be improved according to the increase of two parameters. In the comparison according to the scan time, the image contrast and FWHM showed altogether the result of being linearly improved according to the iteration times and subset number increase in projection per 10, 20 and 30 second image but the variation coefficient did not show the tendency to be improved. Conclusion: The linear relationship of the image contrast improved in 3D OSEM reconstruction method image of applying 3D beam modeling through this experiment like the existing 1D and 2D OSEM reconfiguration method according to the iteration times and subset number increase could be confirmed. However, this is simple phantom experiment and the result of obtaining by the some patients limited range and the various variables can be existed. So for generalizing this based on this results of this experiment, there is the excessiveness and the evaluation about 3D OSEM reconfiguration method should be additionally made through experiments after this.

  • PDF

Parallel processing in structural reliability

  • Pellissetti, M.F.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.95-126
    • /
    • 2009
  • The present contribution addresses the parallelization of advanced simulation methods for structural reliability analysis, which have recently been developed for large-scale structures with a high number of uncertain parameters. In particular, the Line Sampling method and the Subset Simulation method are considered. The proposed parallel algorithms exploit the parallelism associated with the possibility to simultaneously perform independent FE analyses. For the Line Sampling method a parallelization scheme is proposed both for the actual sampling process, and for the statistical gradient estimation method used to identify the so-called important direction of the Line Sampling scheme. Two parallelization strategies are investigated for the Subset Simulation method: the first one consists in the embarrassingly parallel advancement of distinct Markov chains; in this case the speedup is bounded by the number of chains advanced simultaneously. The second parallel Subset Simulation algorithm utilizes the concept of speculative computing. Speedup measurements in context with the FE model of a multistory building (24,000 DOFs) show the reduction of the wall-clock time to a very viable amount (<10 minutes for Line Sampling and ${\approx}$ 1 hour for Subset Simulation). The measurements, conducted on clusters of multi-core nodes, also indicate a strong sensitivity of the parallel performance to the load level of the nodes, in terms of the number of simultaneously used cores. This performance degradation is related to memory bottlenecks during the modal analysis required during each FE analysis.

On the edge independence number of a random (N,N)-tree

  • J. H. Cho;Woo, Moo-Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.119-126
    • /
    • 1996
  • In this paper we study the asymptotic behavior of the edge independence number of a random (n,n)-tree. The tools we use include the matrix-tree theorem, the probabilistic method and Hall's theorem. We begin with some definitions. An (n,n)_tree T is a connected, acyclic, bipartite graph with n light and n dark vertices (see [Pa92]). A subset M of edges of a graph is called independent(or matching) if no two edges of M are adfacent. A subset S of vertices of a graph is called independent if no two vertices of S are adjacent. The edge independence number of a graph T is the number $\beta_1(T)$ of edges in any largest independent subset of edges of T. Let $\Gamma(n,n)$ denote the set of all (n,n)-tree with n light vertices labeled 1, $\ldots$, n and n dark vertices labeled 1, $\ldots$, n. We give $\Gamma(n,n)$ the uniform probability distribution. Our aim in this paper is to find bounds on $\beta_1$(T) for a random (n,n)-tree T is $\Gamma(n,n)$.

  • PDF

TOPOLOGICAL MAGNITUDE OF A SPECIAL SUBSET IN A SELF-SIMILAR CANTOR SET

  • Baek, In-Soo
    • The Pure and Applied Mathematics
    • /
    • v.14 no.1 s.35
    • /
    • pp.1-5
    • /
    • 2007
  • We study the topological magnitude of a special subset from the distribution subsets in a self-similar Cantor set. The special subset whose every element has no accumulation point of a frequency sequence as some number related to the similarity dimension of the self-similar Cantor set is of the first category in the self-similar Cantor set.

  • PDF

ATOMIC HYPER BCK-ALGEBRAS

  • Harizavi, Habib
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2009
  • In this manuscript, we introduce the concept of an atomic subset of the hyper BCK-algebra and study its properties. Also, we give a characterization of the atomic hyper BCK-algebra and show that there are exactly (up to isomorphism) n atomic hyper BCK-algebras H with |H| = n for any natural number n.

Scanner and Analyzer of ALGOL-60(Subset) for IBM II30 (IBM 1130을 위한 ALGOL-60(Subset)의 스캐너와 어낼라이저)

  • 朴永文;Choy, 崔燕 =-Youn
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.3 no.1
    • /
    • pp.12-17
    • /
    • 1985
  • This pape rdeals with the first half of ALGOL-60(Subset) compiler -scanner and analyzer-, which is writter in FORTRAN IV. As the original syntax description of ALGOL-60 is too complex to use, real number array, and procedures are omitted. And a subset of ALGOL-60 is defined.

Ensemble variable selection using genetic algorithm

  • Seogyoung, Lee;Martin Seunghwan, Yang;Jongkyeong, Kang;Seung Jun, Shin
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.629-640
    • /
    • 2022
  • Variable selection is one of the most crucial tasks in supervised learning, such as regression and classification. The best subset selection is straightforward and optimal but not practically applicable unless the number of predictors is small. In this article, we propose directly solving the best subset selection via the genetic algorithm (GA), a popular stochastic optimization algorithm based on the principle of Darwinian evolution. To further improve the variable selection performance, we propose to run multiple GA to solve the best subset selection and then synthesize the results, which we call ensemble GA (EGA). The EGA significantly improves variable selection performance. In addition, the proposed method is essentially the best subset selection and hence applicable to a variety of models with different selection criteria. We compare the proposed EGA to existing variable selection methods under various models, including linear regression, Poisson regression, and Cox regression for survival data. Both simulation and real data analysis demonstrate the promising performance of the proposed method.

THE SPLIT AND NON-SPLIT TREE (D, C)-NUMBER OF A GRAPH

  • P.A. SAFEER;A. SADIQUALI;K.R. SANTHOSH KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.511-520
    • /
    • 2024
  • In this paper, we introduce the concept of split and non-split tree (D, C)- set of a connected graph G and its associated color variable, namely split tree (D, C) number and non-split tree (D, C) number of G. A subset S ⊆ V of vertices in G is said to be a split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is disconnected. The minimum size of the split tree (D, C) set of G is the split tree (D, C) number of G, γχST (G) = min{|S| : S is a split tree (D, C) set}. A subset S ⊆ V of vertices of G is said to be a non-split tree (D, C) set of G if S is a tree (D, C) set and ⟨V - S⟩ is connected and non-split tree (D, C) number of G is γχST (G) = min{|S| : S is a non-split tree (D, C) set of G}. The split and non-split tree (D, C) number of some standard graphs and its compliments are identified.