Commun. Korean Math. Soc. 24 (2009), No. 3, pp. 333-339 DOI 10.4134/CKMS.2009.24.3.333

ATOMIC HYPER BCK-ALGEBRAS

HABIB HARIZAVI

ABSTRACT. In this manuscript, we introduce the concept of an atomic subset of the hyper BCK-algebra and study its properties. Also, we give a characterization of the atomic hyper BCK-algebra and show that there are exactly (up to isomorphism) n atomic hyper BCK-algebras H with |H| = n for any natural number n.

1. Introduction and preliminaries

The study of BCK-algebras was initiated by Y. Imai and K. Iséki [2] in 1966 as a generalization of the concept of set-theoretic difference and propositional calculi. Since then a great deal of literature has been produced on the theory of BCK-algebras. The hyper structure theory (called also multi algebras) was introduced in 1934 by F. Marty at the 8th congress of Scandinavian Mathematicians. In [4], Y. B. Jun et al. applied the hyper structures to BCK-algebras, and introduced the notion of a hyper BCK-algebra which is a generalization of BCK-algebra, and investigated some related properties. Now, we follow [1] and [4] and introduce the concept of an atomic subset of the hyper BCK-algebra and study its properties.

Let H be a non-empty set endowed with a hyper operation " \circ ", that is, • is a function from $H \times H$ to $\mathcal{P}^*(H) = \mathcal{P}(\mathcal{H}) \setminus \{\phi\}$. For two subset A and B of H, denote by $A \circ B$ the set $\bigcup_{a \in A, b \in B} a \circ b.$ We shall use $x \circ y$ instead of

 $x \circ \{y\}, \{x\} \circ y, \text{ or } \{x\} \circ \{y\}.$

Definition 1.1 ([4]). By a hyper BCK-algebra we mean a non-empty set Hendowed with a hyper operation "o" and a constant 0 satisfying the following axioms:

(H1) $(x \circ z) \circ (y \circ z) \ll x \circ y$, (H2) $(x \circ y) \circ z = (x \circ z) \circ y$, (H3) $x \circ H \ll \{x\},\$

Received May 28, 2008; Revised December 4, 2008.

2000 Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. hyper BCK-algebra, atomic subset and atomic hyper BCKalgebra.

©2009 The Korean Mathematical Society

(H4) $x \ll y$ and $y \ll x$ imply x = y

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq H$, $A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such case, we call " \ll " the hyper order in H.

Theorem 1.2 ([4]). In any hyper BCK-algebra H, the following hold:

(a1) $0 \circ 0 = \{0\}$, (a2) $0 \ll x$, (a3) $x \ll x$, (a4) $A \ll A$, (a5) $A \ll 0$ implies $A = \{0\}$, (a6) $A \subseteq B$ implies $A \ll B$, (a7) $0 \circ x = \{0\}$, (a8) $x \circ y \ll x$, (a9) $x \circ 0 = \{x\}$, (a10) $y \ll z$ implies $x \circ z \ll x \circ y$, (a11) $x \circ y = \{0\}$ implies $(x \circ z) \circ (y \circ z) = \{0\}$ and $x \circ z \ll y \circ z$, (a12) $A \circ \{0\} = \{0\}$ implies $A = \{0\}$ for all $x, y, z \in H$ and $A, B \subseteq H$.

Definition 1.3 ([4]). Let H be a hyper *BCK*-algebra. Then

(i) A non-empty subset S of H is called a *hyper subalgebra* of H if S is a hyper BCK-algebra with respect to the hyper operation " \circ " on H.

Definition 1.4 ([4]). Let H be a hyper BCK-algebra. Then, a non-empty subset I of H with $0 \in I$ is called a weak hyper BCK-ideal of H if it satisfies: $(\forall x, y \in H)(x \circ y \subseteq I, \text{ and } y \in I \Longrightarrow x \in I)$; hyper BCK-ideal of H if it satisfies: $(\forall x, y \in H)(x \circ y \ll I \text{ and } y \in I \Longrightarrow x \in I)$; reflexive hyper BCK-ideal of H if it is a hyper BCK-ideal of H and satisfies: $(\forall x \in H) x \circ x \subseteq I;$ strong hyper BCK-ideal of H if it satisfies: $(\forall x, y \in I)(x \circ y \land I = K)$ if $X \circ y \in I$ and $y \in I \implies x \in I)$ is an $y \in I \implies x \in I$.

Theorem 1.5 ([4]). Let S be a non-empty subset of a hyper BCK-algebra H. Then S is a hyper subalgebra of H if and only if $x \circ y \subseteq S$ for all $x, y \in S$.

Theorem 1.6 ([4]). Let H be a hyper BCK-algebra. Then the set $S(H) := \{x \in H | x \circ x = \{0\}\}$ is a hyper subalgebra of H, which is called BCK-part of H.

Theorem 1.7 ([3]). Let A be a subset of a hyper BCK-algebra H. If I is a hyper BCK-ideal of H such that $A \ll I$, then A is contained in I.

Theorem 1.8 ([1]). Let Θ be a regular congruence relation on H and $\frac{H}{\Theta} = \{[x]_{\Theta} \mid x \in H\}$. Then $\frac{H}{\Theta}$ with hyperoperation " \circ " and hyperorder "<" which is defined as follows, is a hyper BCK-algebra which is called quotient hyper BCK-algebra,

 $[x]_\Theta \circ [y]_\Theta = \{[z]_\Theta : z \in x \circ y\}, \ [x]_\Theta < [y]_\Theta \Longleftrightarrow [0]_\Theta \in [x]_\Theta \circ [y]_\Theta.$

Theorem 1.9 ([1]). Let Θ be a regular congruence relation on H. Then

 $[0]_{\Theta}$ is a reflexive hyper BCK-ideal of $H \iff \frac{H}{\Theta}$ is a BCK-algebra.

2. Main results

Definition 2.1. Let H be a hyper BCK-algebra. Then

(i) An element a belong to H is said to be an *atom* if it satisfies:

 $(\forall x \in H)(x \ll a \Longrightarrow x = 0 \text{ or } x = a).$

(ii) A subset A of H is said to be *atomic* if each element of A is an atom.

Example 2.2. Consider a hyper *BCK*-algebra $H = \{0, 1, 2, 3\}$ with the following Cayley table:

0	0	1	2	3
0	{0}	$\{0\}$	$\{0\}$	$\{0\}$
1	{1}	$\{0, 1\}$	$\{0\}$	$\{1\}$
2	{2}	$\{2\}$	$\{0, 1, 2\}$	$\{2\}$
3	{3}	$\{3\}$	$\{3\}$	$\{0,3\}$

It is easy to verify that the element 1 is an atom and the subset $A := \{0, 1\}$ is atomic but the subset $B := \{0, 2\}$ is not atomic.

Now, we consider the property of atomic subsets. The following lemma shows that the concept of weak hyper BCK-ideal and hyper BCK-ideal is the same when the subset is atomic.

Lemma 2.3. Let H be a hyper BCK-algebra and let $A \subseteq H$ be atomic. Then

A is a weak hyper BCK-ideal of $H \iff A$ is a hyper BCK-ideal of H.

Proof. (\Longrightarrow) It is clear that $0 \in A$. Suppose that $x, y \in H$ such that $x \circ y \ll A$ and $y \in A$. Let $t \in x \circ y$. Then, by Theorem 1.2(a8), there exists $a \in A$ such that $t \ll a$. Since A is atomic, it follows from definition 2.1 that t = 0 or t = a. Hence $x \circ y \subseteq A$. Since A is a weak hyper BCK-ideal of H and $y \in A$, it follows from Definition 1.4 that $x \in A$. Therefore A is a hyper BCK-ideal of H.

 (\Leftarrow) It follows from Theorem 3.21 [4].

Lemma 2.4. Let H be a hyper BCK-algebra. If $A \subseteq H$ is atomic, then $a \circ x \subseteq \{0, a\}$ for all $a \in A$ and $x \in H$.

Proof. Let $a \in A$ and $x \in H$. It follows from Theorem 1.2(a8) that $t \ll a$ for any $t \in a \circ x$. Since A is atomic, it follows that t = 0 or t = a. Hence $a \circ x \subseteq \{0, a\}$.

By using Lemma 2.4, we have the following corollary.

Corollary 2.5. Every atomic subset of a hyper BCK-algebra is a hyper subalgebra.

335

Lemma 2.6. If a hyper BCK-algebra H is atomic, then

(i) $x \circ y \subseteq \{0, x\}$ for all $x, y \in H$,

(ii) $x \circ y = \{x\}$ for all $x, y \in H$ with $x \neq y$.

Proof. (i) By using Lemma 2.4, the result holds.

(ii) Let $x, y \in H$ be such that $x \neq y$. If x = 0, then $x \circ y = 0 \circ y = \{0\} = \{x\}$ by Theorem 1.2(a7). If $x \neq 0$, then by (i) it is enough to show that $0 \notin x \circ y$. If not, then $x \ll y$ and so x = 0 or x = y, which contracts with hypothesis. Therefore $x \circ y = \{x\}$.

We suppose that the hyper BCK-algebra is atomic and consider its properties.

Theorem 2.7. Every subset containing 0 of an atomic hyper BCK-algebra is a strong hyper BCK-ideal.

Proof. Let H be an atomic hyper BCK-algebra, and let $0 \in A \subseteq H$. Suppose $x \in H$ and $y \in A$ be such that $x \circ y \cap A \neq \phi$. Then we may assume that $a \in A$ and $a \in x \circ y$. Since $x \circ y \ll x$ by Theorem 1.2(a8), it follows that $a \ll x$. Since H is atomic, we get a = 0 or a = x. If a = 0, then $x \ll y$ and so x = 0 or x = y, which implies $x \in A$. If a = x, then $x \in A$. Therefore A is a strong hyper BCK-ideal of H.

Theorem 2.8. Let H be an atomic hyper BCK-algebra and let K be an arbitrary hyper BCK-algebra. If $f : H \longrightarrow K$ is an epimorphism, then f(A) is atomic for all $(\phi \neq)A \subseteq H$. In particular, K is atomic.

Proof. Assume that $f(x) \ll f(y)$ for some $x, y \in A$. Then $0 \in f(x) \circ f(y) = f(x \circ y)$. Hence there exists $t \in x \circ y$ such that f(t) = 0. By Corollary 2.5, we have $x \circ y \subseteq A$. Thus $t \in A$. Since $x \circ y \ll x$, it follows that $t \ll x$ and so t = 0 or t = x. If t = 0, then $x \ll y$, which implies that x = 0 or x = y. Hence f(x) = 0 or f(x) = f(y). If t = x, then f(x) = f(t) = 0. Therefore f(A) is an atomic subset of K. Since f is surjective, f(H) = K and so K is atomic. \Box

Proposition 2.9. Let H and K be two atomic hyper BCK-algebras. If there exists a bijection mapping $f : H \longrightarrow K$ such that f(0) = 0, then

f is an isomorphism
$$\iff f(S(H)) = S(K).$$

Proof. Let f(S(H)) = S(K). We will show that f is an isomorphism. By the hypothesis, it is enough to show that f is a homomorphism, that is, $f(x \circ y) = f(x) \circ f(y)$ for all $x, y \in H$. Let $x, y \in H$. We consider the following cases:

(i) $x, y \in S(H)$.

This implies $f(x), f(y) \in S(K)$ by hypothesis. If x = y, then $x \circ y = \{0\}$ and so $f(x \circ y) = \{0\}$. Since f is a bijection mapping and x = y, we get f(x) = f(y) and so $f(x) \circ f(y) = \{0\}$ because $f(x) = f(y) \in S(K)$. If $x \neq y$, then $f(x) \neq f(y)$. It follows from Lemma 2.6(ii) that $x \circ y = \{x\}$ and so $f(x) \circ f(y) = \{f(x)\}$. Hence $f(x \circ y) = f(x) \circ f(y)$.

(ii) $x, y \notin S(H)$.

This implies $f(x), f(y) \notin S(K)$ by hypothesis. If x = y, then $x \circ y = \{0, x\}$ by Lemma 2.6 and assumption (ii). Hence $f(x \circ y) = \{0, f(x)\}$. Since f is a bijection mapping and x = y, we get f(x) = f(y) and so $f(x) \circ f(y) = \{0, f(x)\}$ because $f(x), f(y) \notin S(K)$. If $x \neq y$, then $f(x) \neq f(y)$. It follows from Lemma 2.6(ii) that $x \circ y = \{x\}$ and $f(x) \circ f(y) = \{f(x)\}$. Hence $f(x \circ y) = f(x) \circ f(y)$.

(iii) $x \in S(H)$, $y \notin S(H)$ or $x \notin S(H)$, $y \in S(H)$.

This implies $x \neq y$ and similar to proof of (i), we get $f(x \circ y) = \{f(x)\} = f(x) \circ f(y)$. Therefore f is an isomorphism.

Conversely, let f be an isomorphism. For any $x \in S(H)$, we have

$$f(x) \circ f(x) = f(x \circ x) = f(\{0\}) = \{0\}.$$

This shows that $f(x) \in S(K)$. Hence $f(S(H)) \subseteq S(K)$. Let $y \in S(K)$. Since f is surjective, we have y = f(x) for some $x \in H$. It follows that $\{0\} = y \circ y = f(x) \circ f(x) = f(x \circ x)$ and so f(t) = 0 for all $t \in x \circ x$. Since f is one-to-one, t = 0. Hence $x \circ x = \{0\}$ and so $x \in S(H)$. Therefore $y = f(x) \in f(S(H))$ and so $S(K) \subseteq f(S(H))$, which completes the proof. \Box

Proposition 2.10. Let H be a set, and let $0 \in A \subseteq H$. Define a hyper operation " \circ " on H as follows:

(2.1)
$$x \circ y = \begin{cases} \{0\}, & \text{if } x = 0 \text{ or } x = y \in A \\ \{0, x\}, & \text{if } x = y \notin A \\ \{x\}, & x \neq y \end{cases}$$

Then $(H, \circ, 0)$ is an atomic hyper BCK-algebra and S(H) = A.

Proof. Let $x, y, z \in H$. We show that H satisfies the axioms of the hyper BCK-algebra.

(H1) $(x \circ z) \circ (y \circ z) \ll x \circ y.$

By the definition of hyper operation " \circ ", it is enough to show that if whenever $x \circ y = \{0\}$, then $(x \circ z) \circ (y \circ z) = \{0\}$. It follows from $x \circ y = \{0\}$ that $x \ll y$, and so x = 0 or $x = y \in A$ by Definition 1.1. It is easy to check that $(x \circ z) \circ (y \circ z) \ll x \circ y = \{0\}$, that is, $(x \circ z) \circ (y \circ z) = \{0\}$. Therefore (H1) holds.

(H2) $(x \circ y) \circ z = (x \circ z) \circ y.$

We consider the following cases:

- (i) y = z and $x \neq y$.
- In this case, by using (2.1), we have $(x \circ y) \circ z = x \circ z = \{x\} = x \circ y = (x \circ z) \circ y$. (ii) $y \neq z$ and $x = y \in A$.

In this case, we have $(x \circ y) \circ z = \{0\} = x \circ y = (x \circ z) \circ y$ by (2.1).

(iii) $y \neq z$ and $x = y \notin A$.

In this case, it follow from (2.1) that $(x \circ y) \circ z = \{0, x\} \circ z = \{0, x\} = x \circ y = (x \circ z) \circ y$.

(iv) $y \neq z, x \neq y$ and $x \neq z (y \neq z \text{ and } x = z)$.

In this case, we have $(x \circ y) \circ z = \{x\} \circ z = \{x\} = x \circ z = (x \circ z) \circ y$. Therefore (H2) holds.

(H3) $x \circ H \ll x$.

It is clear.

(H4) If $x \ll y$ and $y \ll x$, then x = y.

Since $x \ll y$ and $y \ll x$, it follows from definition of " \ll " that $0 \in x \circ y$ and $0 \in y \circ x$. If x = 0, then $y \circ x = \{y\}$ by (2.1), and so y = 0. Hence x = y. If $x \neq 0$ and $x \circ y = \{0\}$, then $x = y \in A$ by (2.1). If $x \neq 0$ and $x \circ y = \{0, x\}$, then $x = y \notin A$. Therefore (H4) holds and so H is a hyper *BCK*-algebra. Now, let $x, y \in H$ be such that $x \ll y$. Thus $0 \in x \circ y$. It follows from (2.1) that x = 0 or x = y. Therefore H is atomic.

Theorem 2.11. For any natural number n, there are exactly (up to isomorphism) n atomic hyper BCK-algebras such H, where |H| = n.

Proof. Let *n* be a natural number, and let *H* be a set with |H| = n. By Proposition 2.10, there exists an atomic hyper *BCK*-algebra *H* such that |S(H)| = |A|, where $(\phi \neq)A$ be an arbitrary subset of *H*. Since |A| has *n* choice, that is, |A| = 1, 2, ..., n, the assertion is immediate consequence of Proposition 2.9.

Now, we give some properties of quotient of atomic hyper BCK-algebra.

Lemma 2.12. Let H be an atomic hyper BCK-algebra with $S(H) = \{0\}$, and let Θ be a regular congruence relation on H. If the hyper BCK-ideal $[0]_{\Theta}$ is reflexive, then $[0]_{\Theta} = H$.

Proof. By Lemma 2.6, we have $x \circ x \subseteq \{0, x\}$ for every $x \in H$. It follows from $S(H) = \{0\}$ that $x \circ x = \{x\}$ for all $x \in H$. Since $[0]_{\Theta}$ is reflexive, we have $x \circ x \subseteq [0]_{\Theta}$ and so $x \in [0]_{\Theta}$. Therefore $H = [0]_{\Theta}$.

Corollary 2.13. Let H be an atomic hyper BCK-algebra such that $S(H) = \{0\}$, and let Θ be a regular congruence relation on H. Then

$$\frac{H}{\Theta}$$
 is BCK-algebra if and only if $\frac{H}{\Theta} = \{0\}.$

Proof. If $\frac{H}{\Theta}$ is a *BCK*-algebra, then $[0]_{\Theta}$ is reflexive by Theorem 1.9. It follows from Lemma 2.12 that $[0]_{\Theta} = H$ and so $\frac{H}{\Theta} = \{0\}$. Conversely, it is clear. \Box

Acknowledgments. I would like to thank the referee for his refereeing and valuable suggestions.

ATOMIC HYPER *BCK*-ALGEBRAS

References

- R. A. Borzooei and H. Harizavi, Regular congruence relations on Hyper BCK-algebras, Scientiae Mathematicae Japonicae 61 (2005), no. 1, 83–97.
- [2] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19–22.
- [3] Y. B. Jun, X. L. Xin, E. H. Roh, and M. M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebra, Mathematicae Japonicae, Vol. 51 (2000), no. 3, 493–498.
- [4] Y. B. Jun, M. M. Zahedi, X. L. Xin, and R. A. Borzooei, On hyper BCK-algebra, Italian Journal of Pure and Applied Mathematics, Oxford Ser. 10 (2000), 127–136.

DEPARTMENT OF MATHEMATICS SHAHID CHAMRAN UNIVERSITY AHVAZ, IRAN *E-mail address:* harizavi@scu.ac.ir