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Abstract
Variable selection is one of the most crucial tasks in supervised learning, such as regression and classifica-

tion. The best subset selection is straightforward and optimal but not practically applicable unless the number of
predictors is small. In this article, we propose directly solving the best subset selection via the genetic algorithm
(GA), a popular stochastic optimization algorithm based on the principle of Darwinian evolution. To further
improve the variable selection performance, we propose to run multiple GA to solve the best subset selection
and then synthesize the results, which we call ensemble GA (EGA). The EGA significantly improves variable
selection performance. In addition, the proposed method is essentially the best subset selection and hence appli-
cable to a variety of models with different selection criteria. We compare the proposed EGA to existing variable
selection methods under various models, including linear regression, Poisson regression, and Cox regression for
survival data. Both simulation and real data analysis demonstrate the promising performance of the proposed
method.
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1. Introduction

Variable selection has become of great interest in supervised learning, such as regression and classifi-
cation in various applications. Suppose we are given a pair of random variables (Y,X) ∼ FY,X where Y
is a univariate response, X = (X1, . . . , Xp)T is a p-dimensional predictor, and FY,X denotes their joint
distribution. The goal of variable selection is to identify an index set S defined as

S =
{
j | FY |X functionally depends on X j, j = 1, . . . , p

}
, (1.1)

where FY |X is conditional distribution of Y given X.
Variable selection often assumes the relationship between Y and X is completely determined

through a linear function of X, i.e., βT X where β = (β1, . . . , βp)T is a parameter of interest. To
be more precise, we assume

Y⊥X | βT X, (1.2)

where ⊥ denotes the statistical independence. The assumption (1.2) covers a wide variety of models,
including linear regression, generalized linear model, Cox regression, and single index model, to name
a few. Under (1.2), S is equivalently written as

S =
{
j | β j , 0, j = 1, . . . , p

}
.
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In this article, we focus on the parametric models under (1.2), and let `(β; Y,X) denotes a log-
likelihood function of the model. In population level, it is natural to assume that the true model
with informative variables in S achieves the optimal efficiency. That is, we have

S = argmax
S⊆{1,...,p}

sup
βS

E
{
`
(
βS; Y,XS

)}
, (1.3)

where vU = {v j | j ∈ U}T for a given vector v = (v1, . . . , vp) ∈ Rp and an index set U ⊆ {1, . . . , p}.
Given a set of data (yi, xi), i = 1, . . . , n, the best subset selection Ŝ solves an empirical version of (1.3)
given as follows.

Ŝ = argmax
S⊆{1,...,p}

1
n

n∑
i=1

`
(
β̂S; yi, xi,S

)
−C · |S| , (1.4)

where β̂S denotes the maximum likelihood estimator (MLE) of βS, i.e., β̂S = argmaxβS 1/n
∑n

i=1 `(βS;
yi, xi,S). We remark that the second term is necessary to prevent over-fitting in the sample level. Here,
C is a non-negative constant, and the popular choice of C include log n and 2 which are known as
Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC), respectively.

Although it seems straightforward, (1.4) is a combinatorial problem and thus infeasible unless p
is restrictively small. To tackle this, one can solve (1.4) sequentially. Sequential variable selection
methods include forward selection and backward elimination and have become greatly popular in
practice due to their simplicity. However, the sequential methods are inevitably sub-optimal since
they cannot search the entire space of the model.

In the meantime, the penalization has been another canonical approach of the variable selection
since the seminal least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani
(1996). The penalized variable selection solves the following problem to seek a sparse estimator β̂.

β̂ = argmax
β

1
n

n∑
i=1

` (β; yi, xi) −
∑

j

pλ
(∣∣∣β j

∣∣∣) ,
where pλ(β) denotes the sparsity-pursuing penalty function with λ being a non-negative tuning param-
eter that controls the degree of sparsity. Popular choices of the penalty function include, but not are
not limited to LASSO, elastic net (Zou and Hastie, 2005), group lasso (Yuan and Lin, 2006), smoothly
clipped absolute deviance (SCAD) (Fan and Li, 2001) penalty, and minimax concave penalty (MCP)
(Zhang, 2010) penalty. The penalized approach estimate Ŝ as { j | β̂ j , 0, j = 1, . . . , p} where β̂ j

denotes the jth element of β̂. The penalized variable selection is also closely connected to the best
subset selection. It is well known that L0-penalized variable selection is equivalent to the best subset
selection, and all the aforementioned penalties can be viewed as a continuous approximation of the
L0-penalty.

Our work is motivated by the following question: Can we solve (1.4) directly? In this paper, we
propose to solve (1.4) via genetic algorithm (GA), a popular stochastic search algorithm motivated
by the principle of Darwinian evolution. GA is an effective tool for solving NP–hard optimization
problems such as the best subset selection. See for example, Leardi and Gonzalez (1998); David et
al. (1997) and Niazi and Leardi (2012).

In the meantime, Zhu and Chipman (2006) proposed to parallel version of GA-based variable
selection to enhance the variable selection by running multiple GA with several initial values and then
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Figure 1: Illustration of genetic representation of GA: gene, chromosome, and population.

synthesizing the multiple results. One can notice that their idea can be viewed as an ensemble variable
selection.

The success of the ensemble variable selection depends on the diversity of base selectors to be
aggregated for the final result. There are two ways to introduce the diversity in the ensemble variable
selection. First type is generate randomness from the data by using resampling method like bootstrap
or subsampling. See Zhu and Fan (2011); Wang et al. (2011), and Meinshausen and Bühlmann (2010).
Another way to introduce the diversity is to use a stochastic base selector. The parallel version of GA-
based variable selection proposed by Zhu and Chipman (2006) is a canonical example for this type.
See also Xin and Zhu (2012) and Zhang et al. (2016).

In this article, we extend the idea of Zhu and Chipman (2006), which focuses only on the linear
regression model, to more general models satisfying (1.2) that include the generalized linear model
and cox-regression for censored responses as a special case. Although our proposal is technically
identical to Zhu and Chipman (2006), except for extension beyond the linear regression, we focus
more on the ensemble aspect of the method instead of the GA aspect. Namely, Zhu and Chipman
(2006) understand their algorithm as a variant of GA, but we regard it as a version of ensemble
variable selection. From our point of view, GA is not essential, and any stochastic variable selection
method can be used as a base selector, which brings a natural extension of the method. For this reason,
we call the method ensemble variable selection based on the genetic algorithm (to be referred to as
EGA hereafter) instead of the parallel GA algorithm named by Zhu and Chipman (2006).

The proposed EGA has a clear advantage in practice due to its conceptual simplicity. We demon-
strate its promising performance through a simulation study and real data analysis under various mod-
els beyond the classical linear regression.

The remainder of the paper is organized as follows. In Section 2, we introduce GA and describe
how to solve the best subset selection problem using GA. In Section 3, the ensemble extension of
the GA-based variable selection is described in great detail. Simulation studies to evaluate the finite
sample performance of the EGA are conducted in Section 4, and illustration to real data examples is
given in Section 5. Concluding remarks follow in Section 6.

2. Variable selection via genetic algorithm

We start by briefly reviewing GA. Three components consist of GA: genetic representation, fitness
function, and evolutionary operators. First, genetic representation is defined as a coded representation
of input variable of objective function to be optimized. In the variable selection context, S can be
equivalently encoded as a binary array of length p, denoted as 1S whose jth element is 1 if j ∈ S
and 0 otherwise, where j = 1, . . . , p. We call this binary array a chromosome, and each of its digits
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Figure 2: A flowchart of the genetic algorithm.

a gene. To run GA, we need a multiple number of chromosomes. A set of chromosomes is called a
population. See Figure 1 for the graphical description of the genetic representation.

Second, the fitness function measures the quality of a current solution and is often an objective
function to be optimized. Without loss of generality, we use Bayesian Information Criterion (BIC)
that solves the best subset selection (1.4) with C = log n.

Once we decide our genetic representation and fitness function, we only need to iteratively apply
the genetic operators, the last component of GA. There are three operators, selection, crossover, and
mutation. Having a population of chromosomes in hand, we evaluate the fitness of each chromosome.
The selection operator chooses those chromosomes with high fitness, for instance, the top 50% of
the population. The crossover operator randomly selects two chromosomes among the survived chro-
mosomes. Then flip a coin p times to select indices of the genes to be swapped, where p denotes
the length of a chromosome. Finally, genes that correspond to randomly selected indices of selected
chromosomes are swapped. This operation gives two new chromosomes with mixed genes of survived
chromosomes, possibly having above-average fitness. Applying the crossover operators sufficiently
many times, we construct a new generation of the population having the same size as the previous
one. The mutation operator is then applied as follows. Once we have a new population, we flip each
digit in the chromosomes with a small probability. In this way, we may maintain our search space
moderately large.

The main idea of GA is that if we iterate this process repeatedly, the average fitness of chromo-
somes in the population will gradually increase. One can allow the best organisms of the present
generation to move to the next generation without change, which is called Elitism. This strategy en-
sures that the quality of the solution obtained by GA does not degrade from one generation to the
next. The iteration is over when the termination criterion is met. We may either set the upper bound
in the number of generations or iterate it until some homogeneity is achieved in the population. When
the iteration is over, the chromosome with the highest fitness is our desired output. Finally, Figure 2
summarizes GA.

3. Ensemble GA for variable selection

Since the initial population is arbitrary, running GA essentially independently results in slightly dif-
ferent outcomes. Most GA grasp the informative variables well, while erroneously selected noise
variables differ among each GA. This motivates to repeat the GA run multiple times to reduce the
false positives and ensemble multiple GA runs by taking a digit-wise average of the outputs. We call
this ensemble GA (EGA). Suppose we run GA K-times independently to solve (1.4). Let 1

Ŝk
be the

solution (i.e., Chromosome that yields the highest fitness) of the kth GA run for k = 1, . . . ,K and
ck j denotes the jth gene of the 1

Ŝk
. Let us define m j, j = 1, . . . , p as the relative frequency of the j
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Figure 3: Selection frequency m1, . . . ,mp for a simulated example. The first 10 informative variables (red dots)
are all close to 1 while others (gray ‘x’ symbols) are not. If we set δ = 0.5, the EGA successively selects all

informative variables.

predictor selected during the K independent GA runs.

m j =
1
K

K∑
k=1

ck j, j = 1, . . . , p.

Since single GA performs reasonably well, m j is significantly larger than 0 if jth predictor is informa-
tive one, and not otherwise. Figure 3 illustrates m j, j = 1, . . . , p computed from 30(= K) independent
GA runs for an illustrative data generated as example 1 with p = 500 given in Section 4, but different
β structure. In this example, the first ten variables are informative and the rest are noises. One can
observe a clear distinction between the informative and noise variables. Therefore we can conclude
the jth variable is informative when m j > δ.

Now, the next question is how to choose the cutoff value δ. We propose δ to be

δ =

(
m(i∗+1) + m(i∗)

)
2

,

where i∗ = argmax
i

(
m(i+1) − m(i)

)
with m(i) being the ith ordered value of m. That is, δ is the half of

the the largest gap among the sorted m(1) ≤ · · · ≤ m(p).
Finally, we investigate how sensitive the EGA is to the number of independent GA to the ensemble

(K), and the number of generations for each GA, we denote ng. Figure 4 depicts the heat-map of the
number of (a) informative variables and (b) noise variables selected by the EGA for the previous
illustrative example for different combinations of (K, ng). One crucial observation is that ng needs not
be very large in EGA unless K is too small. This is practically attractive in practice since each run of
EGA can be easily parallelized, which drastically reduces the computational burden of EGA.
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Figure 4: Effect of K and ng for EGA: ng needs not to be large as long as K is not very small.

4. Simulation studies

To assess the performance of the proposed methods based on the GA, we conduct simulation studies
under three popular models satisfying the linearity assumption (1.2): linear regression, Poisson re-
gression for counting response, and Cox proportional hazard (PH) regression for censored response.
We try the logistic regression, one of the most popular classification methods, yet, glm() function
often fails to converge during the GA. The results are omitted. As competing methods, we consider
LASSO- and SCAD-penalized regressions, both of which are implemented in R (resp. glmnet and
ncvreg pakages). We use BIC for example 1 and 2, and a modified BIC (Volinsky and Raftery, 2000)
for the Cox PH regression example 3 to select variables.

In all scenarios, we have eight predictors to be informative variables out of p ∈ {20, 50, 100}
variables, and set n = 200. We generate all predictors from p-variate normal distribution with mean
0 and three different covariance variances Σ, i) independent {Σ}i j = 0,∀i , j, ii) autoregressive
{Σ}i j = 0.5|i− j|,∀i , j, and iii) compound symmetry {Σ}i j = 0.5,∀i , j. We find that the patterns
of simulation results are similar for all covariance structures, and report independent case only to
avoid redundancy. See Online Supplementary Materials for the results for the autoregressive and the
compound symmetry covariance cases.

We set ng = 200 for GA, and ng = 10 for EGA with K = 100. For both versions of GA, the
population size is set as 40, 60, and 80 for p = 20, 50, and 100, respectively. We set twenty percent
of genes in each chromosome to have a value of 1 at an initial population and allow the top ten-
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Table 1: Linear regression for independent predictors

p Methods NT NI NC ER

20

LASSO 8.00 (0.00) 0.00 (0.00) 100 0.293 (0.177)
SCAD 8.00 (0.00) 0.00 (0.00) 100 0.044 (0.023)

GA 8.00 (0.00) 0.30 (0.56) 75 0.054 (0.033)
EGA 8.00 (0.00) 0.15 (0.36) 85 0.049 (0.027)

50

LASSO 8.00 (0.00) 3.93 (2.40) 3 0.165 (0.062)
SCAD 8.00 (0.00) 0.13 (0.53) 92 0.045 (0.021)

GA 8.00 (0.00) 1.33 (1.26) 29 0.092 (0.054)
EGA 8.00 (0.00) 0.09 (0.32) 92 0.049 (0.028)

100

LASSO 8.00 (0.00) 4.43 (3.06) 7 0.220 (0.074)
SCAD 8.00 (0.00) 0.11 (0.57) 94 0.041 (0.022)

GA 8.00 (0.00) 2.80 (1.93) 8 0.143 (0.081)
EGA 8.00 (0.00) 0.03 (0.17) 97 0.042 (0.025)

Four performance measures averaged over 100 independent repetitions are reported.
The numbers in parentheses are corresponding standard errors.

Table 2: Poisson regression for independent predictors

p Methods NT NI NC ER

20

LASSO 7.82 (0.39) 0.13 (0.34) 82 0.388 (0.289)
SCAD 7.91 (0.38) 0.04 (0.20) 93 0.134 (0.286)

GA 8.00 (0.00) 0.29 (0.50) 73 0.024 (0.014)
EGA 8.00 (0.00) 0.07 (0.26) 93 0.020 (0.013)

50

LASSO 7.99 (0.10) 4.18 (2.07) 0 0.154 (0.079)
SCAD 7.96 (0.40) 0.12 (0.38) 89 0.086 (0.188)

GA 8.00 (0.00) 0.83 (0.90) 44 0.042 (0.030)
EGA 8.00 (0.00) 0.07 (0.26) 93 0.024 (0.015)

100

LASSO 7.99 (0.10) 5.77 (2.67) 0 0.204 (0.095)
SCAD 7.98 (0.14) 0.20 (0.45) 80 0.081 (0.180)

GA 8.00 (0.00) 1.69 (1.32) 20 0.059 (0.037)
EGA 8.00 (0.00) 0.02 (0.20) 99 0.020 (0.014)

Four performance measures averaged over 100 independent repetitions are reported.
The numbers in parentheses are corresponding standard errors.

percent best elite (i.e., highest BIC) chromosomes in the current generation to survive (i.e., move on
to the next generation without changing). To compare the performance, we consider the following four
measures. We record the average selection frequency of informative and non-informative predictors
denoted by NT and NI, respectively, to evaluate the variable selection performance. We also count
the cases identifying the true model perfectly and denote it by NC. In addition, we also compare the
estimation error by computing ER = (β̂ − β)T Σ(β̂ − β). Note that the proposed methods give the
variable selection result Ŝ only. To compute the estimation error, we fit a model best on the selected
predictors only. On the other hand, the penalized methods directly give β̂.

Finally, We repeat the simulation 100 times independently and report the averaged values over the
repetitions.

4.1. Linear regression

For the linear regression model yi | xi ∼ N(βT xi, σ
2) with σ2 = 1. The regression parameter β =

(β1, . . . , βp) is

β j =

{
β j = 1, j ∈ {1, 2, 3, 4, 6, 7, 9, 10} ,
β j = 0, otherwise.
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Table 1 shows the comparison results under the linear model with independent predictors. One can
see that all methods are comparable in terms of NT. However, GA and LASSO have too many false
positives (i.e., high NI). EGA and SCAD perform similarly and show nearly perfect performance,
while EGA is slightly but consistently better than SCAD. We also like to point out that both EGA and
SCAD are stable even for large p.

4.2. Poisson regression

We consider Poisson regression model yi | xi
iid
∼ Poisson{exp(βT xi)}. The regression coefficient is set

to be

β j =

{
β j = 0.5, j ∈ {1, 2, 3, 4, 6, 7, 9, 10} ,
β j = 0, otherwise.

Table 2 contains the simulation result under Poisson regression. Under this example, the penalized
variable selection method does not perform very well. However, the proposed EGA still performs per-
fectly, as in the previous example. The single GA looks okay but identifies too many noise predictors.
In terms of the model error, EGA outperforms all others.

4.3. Cox proportional hazard regression

We consider the hazard function λ(t|xi) = λ0(t) exp (βT xi) with constant baseline hazard λ0(t) = 1 in
order to generate true survival time ti. We then simulate censoring time from Uniform(0,M) where
M is determined so as to have censoring rate 30%. We can obtain a pair of censored responses
(yi,∆i) where yi = min{ti, ci} and ∆i = I{ci ≥ ti} with I(·) being an indicator function. The regression
coefficients are set to be

β j =

{
β j = 0.7, j ∈ {1, 2, 3, 4, 6, 7, 9, 10} ,
β j = 0, otherwise.

The simulation results for the Cox PH regression are given in Table 3, like other examples, EGA
method seems to outperform all the other methods in all the simulation settings.

We remark that the effect of the ensemble becomes clearer as p increases for all models under con-
sideration. One possible explanation is that the GA tends to have more false positives as p increases,
yet these falsely selected noise variables are removed in the EGA.

5. Real data analysis

5.1. Slump flow data

Slump flow data (Yeh, 2007) includes 103 observations with seven predictors (cement, ash, slag, wa-
ter, sp, ca, and fa) associated with three response variables (slump, flow, and compressive strength).
Slumps and flows measure the viscosity of concrete. Slumps are vertical height, the horizontal dis-
tance through which the wet concrete cone is sagging and flowing. The slump and flow of concrete
are affected by its moisture content and its relationship with other concrete components. The goal is
to model the slump and flow with seven concrete components. Yeh (2007) adopted the second-order
regression Y =

∑p
j=1 β jX j +

∑p
j<k β jkX jXk. Following Yeh (2007), we also employed the second-order

regression model in our analysis, and thus have twenty eight predictors in the model.
We randomly partitioned the data into training and test sets with 80 and 23, respectively. Table

4 summarizes the mean squared error (MSE) and the selection frequencies for leading variables for
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Table 3: Cox regression for independent predictors

p Methods NT NI NC ER

20

LASSO 7.91 (0.81) 0.01 (0.10) 98 1.154 (0.606)
SCAD 7.91 (0.81) 0.02 (0.14) 97 0.460 (0.719)

GA 8.00 (0.00) 0.43 (0.61) 63 0.124 (0.084)
EGA 8.00 (0.00) 0.24 (0.45) 77 0.112 (0.079)

50

LASSO 8.00 (0.00) 1.84 (1.45) 22 0.901 (0.297)
SCAD 8.00 (0.00) 0.74 (1.04) 54 0.154 (0.104)

GA 8.00 (0.00) 1.65 (1.50) 26 0.264 (0.209)
EGA 8.00 (0.00) 0.18 (0.46) 85 0.123 (0.093)

100

LASSO 7.92 (0.80) 1.86 (1.61) 22 1.198 (0.416)
SCAD 8.00 (0.00) 1.29 (1.24) 31 0.209 (0.155)

GA 8.00 (0.00) 3.79 (2.37) 4 0.531 (0.450)
EGA 8.00 (0.00) 0.07 (0.29) 94 0.100 (0.077)

Four performance measures averaged over 100 independent repetitions are reported.
The numbers in parentheses are corresponding standard errors.

Table 4: Mean squared error and the number of selected variables for Slump flow data

Response Method MSE NV slag water cement×sp slag×water slag×ca slag×fa others

slump

GA 15.10 (6.19) 5.90 (1.23) 0.96 1.00 0.76 0.99 0.84 0.89 0.46
EGA 15.31 (5.26) 5.02 (1.36) 0.93 1.00 0.57 0.98 0.65 0.75 0.13

LASSO 19.74 (6.10) 3.12 (2.10) 0.53 0.98 0.46 0.52 0.00 0.29 0.34
SCAD 16.23 (5.55) 5.28 (2.07) 0.88 1.00 0.75 0.88 0.49 0.65 0.63

flow

GA 13.34 (3.58) 5.44 (1.79) 0.99 1.00 0.49 0.70 0.53 0.71 1.02
EGA 13.23 (3.28) 3.77 (1.44) 0.99 1.00 0.29 0.51 0.26 0.51 0.21

LASSO 14.41 (3.40) 2.33 (0.83) 0.91 1.00 0.20 0.02 0.00 0.03 0.17
SCAD 13.81 (3.35) 2.21 (0.86) 0.90 1.00 0.13 0.07 0.02 0.04 0.05

A×B indicates the interaction term between A and B.

each method, based on 100 independent replications. Given that the number of predictors is only
28(= p), we reduce the number of generations for GA to twenty-five. For EGA methods, the number
of generations and ensemble repetition are set same as simulation studies, i.e., (ng = 10 and K = 100).
All methods select water almost always for both responses, slag is also frequently selected by all
methods. GA based method seems to have slightly better performance in terms of test MSE.

5.2. Medical care data

Medical care data (Partha and Pravin, 1997) intend for 4,406(= n) individuals aged 66 and over who
are covered by the public insurance program. The goal is to model the demand for medical care
by features available to patients, and we adopt the number of physician office visits as the response
variable. As predictors, four continuous variables(nchr: the number of chronic conditions; nsch:
the number of years of education; age: a person’s age; income: family income) and seven binomial
variables(adl: condition that limits activities of daily living; and race: black or other; sex: male or
female; married: married or not; employed: employed or not; privins: covered by private insurance;
pubins: covered by public insurance) and two categorical variables(health: poor, average, excellent;
region: northeastern, midwestern, western, other) are used. Finally, we assume the second-order
Poisson regression in the similar manner of the slump flow data set, and compare the variable selection
performance.

We randomly partitioned the data into training and test sets with 3,000 and 1,406, respectively.
Table 5 summarizes the mean absolute error (MAE) and the number of selected variables for each
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Table 5: Mean absolute error and the number of selected variables for Medical care data

GA EGA LASSO SCAD
MAE 4.22 (0.09) 4.23 (0.10) 4.17 (0.08) 4.19 (0.09)
NV 44.92 (3.85) 19.95 (8.83) 34.52 (8.73) 26.18 (5.36)

Table 6: Variable selection result for the PBC data
Methods age asc oed bili alb cop ast prot stage
LASSO 0.016(0.005) 0.102(0.061) 0.658(0.186) 0.084(0.013) −0.557(0.140) 0.003(0.001) 0.001(0.001) 0.130(0.043) 0.273(0.068)
SCAD 0.011(0.003) 0(-) 0.396(0.122) 0.114(0.015) −0.461(0.111) 0.004(0.001) 0(-) 0.074(0.025) 0.225(0.053)

GA 0.029(0.010) 0(-) 0.978(0.338) 0.103(0.018) −0.763(0.273) 0.003(0.001) 0(-) 0(-) 0.442(0.144)
EGA 0.029(0.010) 0(-) 0.978(0.338) 0.103(0.018) −0.763(0.273) 0.003(0.001) 0(-) 0(-) 0.442(0.144)

method, based on 100 independent replications. Penalized methods seem to have better performance
compared to GA-based methods in terms of MAE. The EGA method tended to select the smallest
number of variables with comparable predictive performance.

5.3. Primary biliary cirrhosis (PBC) data

Primary biliary cirrhosis (PBC) data was gathered in the Mayo Clinic trial. PBC data is available
through the R package ‘survival’ and is widely used in the survival analysis i.e.,Tibshirani (1997).
PBC data consists of 418 patients with 17 covariates. Covariates are as follows:
trt : D-penicillamin treatment code, age, sex, asc : presence of ascite, hep : presence of hepatomegaly,
spid : presence of spiders, oed : presence of oedema, bili : serum bilirubin, chol : serum cholesterol,
alb : albumin, cop : urine copper, alk : alkaline phosphatase, ast : aspartate aminotransferase =

SGOT, trig : triglycerides, plat : platelet counts, prot : prothrombin time, stage : histologic stage of
disease.

Observations with missing values are omitted, and 276 complete cases with 17 covariates are
used for analysis. The censoring rate is nearly 60%. Table 6 presents the estimated coefficients and
corresponding standard errors by four methods. LASSO selects the largest number (9) of variables.
And both GA and EGA select the least (6). Sets of variables chosen by LASSO, SCAD, GA, and
EGA methods were somewhat similar. 6 number of covariates (‘age’, ‘oed’, ‘bili’, ‘alb’, ‘cop’, and
‘stage’) are commonly selected.

6. Concluding remarks

In this paper, we study a novel variable selection method based on GA. The idea of ensemble sig-
nificantly improves the variable performance, as demonstrated by a simulation study and real data
analysis. Although the EGA method is computationally intensive, it is easily parallelizable. Since
the proposed idea directly tackles the best subset selection, it is straightforward to understand and
applicable to various statistical models with different model selection criteria.

The GA has a lot of tuning parameters that might affect the variable selection performance. This
article explores a limited number of scenarios, and further study should be done to more clearly
understand the proposed method.

The idea of the ensemble has been extensively applied to various statistical learning problems but
not to variable selection. In the EGA method, a single run of GA plays the role of a weak learner.
However, we can extend this idea by replacing other algorithms instead of GA, such as particle swarm
optimization and differential evolution. This can be a future research direction.
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Supplementary materials

The online Supplementary Materials contain the complete results of the simulation.
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