• Title/Summary/Keyword: Submicron particle size

Search Result 79, Processing Time 0.029 seconds

A Study on Heavy Metal Adsorption of the Submicron HAP (초미립 Hydroxy Apatite의 중금속 흡착에 관한 연구)

  • 안영필;김복희;황재석;신건철
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • Preparation and heavy metal ion adsorption of sumicron hydroxy apatite were studied in this experiment. Submicron HAP was synthesized with Ca(OH)2 solution and H3PO4.Ca(OH)2 solution was made from water-quenching of CaCO3 heated at 1, 00$0^{\circ}C$ and 20%-H3PO4 was dropped into this Ca(OH)2 solution heated at 8$0^{\circ}C$. XRD pattern of prepared powder showed HAP crystal. The average particle size and sahpe of HAP were 0.25${\mu}{\textrm}{m}$ and sphere type. As a adsorbent, 1.0g of the prepared HAP powder in 1 liter of artifical 5ppm heavy matal waste water was sufficient, and more effective at pH7-9.

  • PDF

Synthesis of $Pb(Mg_{1/3}Nb_{2/3})O_3$ by $Li_2SO_4-Na_2SO_4$ Molten Salts ($Li_2SO_4-Na_2SO_4$ 용융염에 의한 $Pb(Mg_{1/3}Nb_{2/3})O_3$의 합성)

  • 윤기현;조용수;남윤우;강동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.543-548
    • /
    • 1993
  • Stability and formation of Pb(Mg1/3Nb2/3)O3 (PMN) phase synthesized in Li2SO4-Na2SO4 molten salts have been investigated. And powder characteristics of PMN have been studied with a variation of processing parameters such as temperature, time, amount of the salts, and excess PbO. More ratio of Li2SO4 to Na2SO4 influences the percentage of perovskite phase due to the difference of the eutectic point of the salts, but does not influence the powder characteristics. The shape of PMN particles shows faceted morphology with bimodal distribution consisting with large and submicron parts. Particle size of PMN increased greatly with increasing soaking time or amount of salts rather than temperature. The addition of excess PbO resulted in round PMN crystallites without submicron particles. These results are discussed by XRD, SEM and thermal analyses.

  • PDF

Design and Performance Evaluation of a Low Pressure Impactor for Sampling Submicron Aerosols (서브마이크론 입자 측정용 저압 임팩터의 설계 및 성능평가)

  • Ji, Jun-Ho;Cho, Myung-Hoon;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.349-358
    • /
    • 2004
  • A low pressure impactor is an impaction device to separate airborne particles into aerodynamic size classes at low pressure condition. We designed a two-stage low-pressure impactor to classify submicron sized environmental aerosols. Performance evaluation was carried out for stages 1 and 2 by using an electrical method. Monodisperse liquid dioctyl sebacate (DOS) particles were generated using evaporation-condensation process followed by electrostatic classification using a DMA (differential mobility analyzer). The test particles were in the range of 0.08∼0.8$\mu\textrm{m}$. For the evaluation of the impactor we used two electrometers; one was connected to the impaction plate of the impactor and the other was to the Faraday cage used as a backup filter. The effect of polydispersity of test aerosols on the performance was investigated. The results showed that the experimental 50-% cutoff diameters at each impactor's operation pressure were 0.53 and 0.187$\mu\textrm{m}$ for stages 1 and stage 2, respectively. The effects of operation pressure on the cutoff diameter and the steepness of collection efficiency curves were also investigated.

A Study on the Preparation of MgO-Al2O3-SiO2 System Ceramic Powders by Spray Pyrolysis Method (분무열분해법에 의한 MgO-Al2O3-SiO2계 화합물의 분체합성 및 그 특성)

  • 박정현;박찬욱;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.397-407
    • /
    • 1988
  • Spinel, mullite and cordierite powders have synthesized from Mg(NO3)2.6H2O, Al(NO3).9H2O and SiCl4 solution by spray pyrolysis method. The two-fluid nozzle was used as an atomizer. The powders of sinel and mullite were synthesized above 80$0^{\circ}C$, but the cordierite composition was noncrystalline for all synthersizing temperature. Those noncrystalline powders were crystallized to $\alpha$-cordierite during calcining at 130$0^{\circ}C$ for 2hrs. The synthesized spinel, mullite and cordierite powders seem to be consisted of agglomerated hollow spherical particles. For all powders, the particle size ranged from submicron to about 3${\mu}{\textrm}{m}$ and mean particle size was about 1.4${\mu}{\textrm}{m}$ in diameter. The specific surface area values of spinel, mullite and cordierite powders were maximum for powders prepared at 100$0^{\circ}C$, and those were 45.9, 25.8 and 13.6$m^2$/gr, respectively.

  • PDF

Coating of Cobalt Over Tungsten Carbide Powder by Wet Chemical Reduction Method

  • Hong, Hyun-Seon;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.93-96
    • /
    • 2014
  • Cobalt coated tungsten carbide-cobalt composite powder has been prepared through wet chemical reduction method. The cobalt sulfate solution was converted to the cobalt chloride then the cobalt hydroxide. The tungsten carbide powders were added in to the cobalt hydroxide, the cobalt hydroxide was reduced and coated over tungsten carbide powder using hypo-phosphorous acid. Both the cobalt and the tungsten carbide phase peaks were evident in the tungsten carbide-cobalt composite powder by X-ray diffraction. The average particle size measured via scanning electron microscope, particle size analysis was around 380 nm and the thickness of coated cobalt was determined to be 30~40 nm by transmission electron microscopy.

Thermal and Mechanical Properties of ZrB2-SiC Ceramics Fabricated by Hot Pressing with Change in Ratio of Submicron to Nano Size of SiC (서브마이크론/나노 크기의 SiC 비율변화에 따른 ZrB2-SiC 세라믹스의 열적, 기계적 특성)

  • Kim, Seongwon;Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.410-415
    • /
    • 2013
  • $ZrB_2$-SiC ceramics are fabricated via hot pressing with different ratios of submicron or nano-sized SiC in a $ZrB_2$-20 vol%SiC system, in order to examine the effect of the SiC size ratio on the microstructures and physical properties, such as thermal conductivity, hardness, and flexural strength, of $ZrB_2$-SiC ceramics. Five different $ZrB_2$-SiC ceramics ($ZrB_2$-20 vol%[(1-x)SiC + xnanoSiC] where x = 0.0, 0.2, 0.5, 0.8, 1.0) are prepared in this study. The mean SiC particle sizes in the sintered bodies are highly dependent on the ratio of nano-sized SiC. The thermal conductivities of the $ZrB_2$-SiC ceramics increase with the ratio of nano-sized SiC, which is consistent with the percolation behavior. In addition, the $ZrB_2$-SiC ceramics with smaller mean SiC particle sizes exhibit enhanced mechanical properties, such as hardness and flexural strength, which can be explained using the Hall-Petch relation.

Preparation of Submicron Barium Titanate Powders. (초미립 $BaTiO_3$의 합성)

  • 안영필;김복희;황재석;유경섭
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.3
    • /
    • pp.278-282
    • /
    • 1984
  • Barium titanate powder was made by firing the complex hydroxide which had been synthesized with chemical wet process by the medium of $H_2O_2$. This experiment was done as following A mixed solution of $BaCl_2$, $TiCl_4$ and $H_2O_2$ with 1:1:10 mol ratio was prepared. Ammonium hydroxide was added into the mixed solution. In the range of pH 8-10 $BaTiO_3$ complex hydroxide was obtained and treated at room temperature 11$0^{\circ}C$, 20$0^{\circ}C$, 40$0^{\circ}C$ and $600^{\circ}C$. The results obtaiined from this experiment were as follows. At room temperature $BaTiO_3$ complex hydroxide was amorphous. Above 10$0^{\circ}C$ crystalline $BaTiO_3$ was obtained and particle size of $BaTiO_3$ was increased with elevated temperature. So the particle size of BaTiO3 could be controlled by the firing temperature. After treating $BaTiO_3$ complex hydroxide at 10$0^{\circ}C$ the average particle size of $BaTiO_3$ was 0.22$\mu\textrm{m}$.

  • PDF

Characteristics of ultrafine $SiO_2$ particle synthesized by Electro-hydyodynamic spray (전기-수력학적 분사에 의해 합성된 초미세 $SiO_2$ 입자의 특성)

  • Yoon, J.U.;Yang, T.H.;Ahn, K.H.;Choi, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.174-179
    • /
    • 2000
  • Ultrafine particles have been used widely in many high technology industrial areas. The spherical nonagglomerated and uniform nanometer-size $SiO_2$ particles are synthesized by the direct injection of TEOS(Tetraethyorthosilicate) using electro-hydrodynamic spray ins method. Electro-hydrodynamic spray can generate in the range of submicron-size TEOS particles with high electric charge by applying a high electric field between the liquid injection nozzle and the reaction tube. This TEOS particles are thermally decomposed or oxidized to produce nanometresized $SiO_2$ particles in the reaction tube. Spherical, nonagglomerated and ultrafine particle generated and examined at furnaced temperature, $800^{\circ}C$ and TEOS flowrate of 0.49 or $1.00cm^3/hr$ using SEM and SMPS. As the total gas flowrate changes from 1.51pm to 5.01pm, the mean diameter of $SiO_2$ particle decreases from 120 nm to 68nm.

  • PDF

Characteristics of Ultrafine SiO$_2$Particle Synthesized by Electro-Hydrodynamic Spray Injection in a Furnace (반응로내 전기-수력학적 분사에 의한 비응집 초미세 SiO$_2$ 입자 합성과 특성)

  • Yun, Jin-Uk;Yang, Tae-Hun;An, Gang-Ho;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.660-665
    • /
    • 2001
  • Ultrafine particles have been widely used in many high technology industrial areas. The spherical nonagglomerated and uniform nanometer-size SiO$_2$particles are synthesized by the direct injection of TEOS(Tetraethyorthosilicate) using electro-hydrodynamic spraying method. Electro-hydrodynamic spraying can generate submicron-size TEOS droplets having high electric charges by applying a high electric field between the liquid injection nozzle and the reaction tube. These TEOS droplets are evaporated, and thermally decomposed or oxidized to produce nanometresized SiO$_2$particles in the reaction tube. Spherical, nonagglomerated and ultrafine particles are generated in various conditions and examined by using SEM and SMPS. As the total gas flow rate in the furnace changes from 1.5 lpm, the mean diameter of SiO$_2$particle decreases from 120 nm to 68 nm. The synthesized particle charging fractions are also investigated.

Micronization of Ceramic Pigments for Digital Ink-Jet Printing Process (디지털 프린팅 공정을 위한 세라믹 안료의 미립화 거동 분석)

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kwon, Jong-Woo;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE $L^{\ast}a^{\ast}b^{\ast}$.