Browse > Article
http://dx.doi.org/10.4191/kcers.2013.50.6.410

Thermal and Mechanical Properties of ZrB2-SiC Ceramics Fabricated by Hot Pressing with Change in Ratio of Submicron to Nano Size of SiC  

Kim, Seongwon (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Chae, Jung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Abstract
$ZrB_2$-SiC ceramics are fabricated via hot pressing with different ratios of submicron or nano-sized SiC in a $ZrB_2$-20 vol%SiC system, in order to examine the effect of the SiC size ratio on the microstructures and physical properties, such as thermal conductivity, hardness, and flexural strength, of $ZrB_2$-SiC ceramics. Five different $ZrB_2$-SiC ceramics ($ZrB_2$-20 vol%[(1-x)SiC + xnanoSiC] where x = 0.0, 0.2, 0.5, 0.8, 1.0) are prepared in this study. The mean SiC particle sizes in the sintered bodies are highly dependent on the ratio of nano-sized SiC. The thermal conductivities of the $ZrB_2$-SiC ceramics increase with the ratio of nano-sized SiC, which is consistent with the percolation behavior. In addition, the $ZrB_2$-SiC ceramics with smaller mean SiC particle sizes exhibit enhanced mechanical properties, such as hardness and flexural strength, which can be explained using the Hall-Petch relation.
Keywords
$ZrB_2$-based ultra-high temperature ceramics (UHTCs); SiC size; Microstructure; Thermal properties; Mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. Monteverde, S. Guicciardi, and A. Bellosi, "Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics," Mater. Sci. Eng. A, 346 [1-2] 310-19 (2003).   DOI   ScienceOn
2 W. G. Fahrenholtz, G. E. Hilmas, A. L. Chamberlain, and J. W. Zimmermann, "Processing and Characterization of $ZrB_2$-based Ultra-high Temperature Monolithic and Fibrous Monolithic Ceramics," J. Mater. Sci., 39 [19] 5951-57 (2004).   DOI   ScienceOn
3 M. J. Gasch, D. T. Ellerby, and S. M. Johnson, "Ultra High Temperature Ceramic Composites," pp. 197-224 in Handbook of Ceramic Composite, Ed. by N. P. Bansal, Kluwer Academic Publishers, Boston/Dordrecht/London, 2005.
4 W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, "Refractory Diborides of Zirconium and Hafnium," J. Am. Ceram. Soc., 90 [5] 1347-64 (2007).   DOI   ScienceOn
5 S. Norasetthekul, P. T. Eubank, W. L. Bradley, B. Bozkurt, and B. Stucker, "Use of Zirconium Diboride Copper as an Electrode in Plasma Applications," J. Mater. Sci., 34 [6] 1261-70 (1999).   DOI   ScienceOn
6 S. Q. Guo, T. Mizuguchi, M. Ikegami, and Y. Kagawa, "Oxidation Behavior of $ZrB_2-MoSi_2-SiC$ Composites in Air at 1500 Degrees C," Ceram. Int., 37 [2] 585-91 (2011).   DOI   ScienceOn
7 S. Q. Guo, "Densification of $ZrB_2$-based Composites and Their Mechanical and Physical Properties: A Review," J. Eur. Ceram. Soc., 29 [6] 995-1011 (2009).   DOI   ScienceOn
8 J.-M. Chae, S.-M. Lee, Y.-S. Oh, H.-T. Kim, K.-J. Kim, S. Nahm, and S. Kim, "Effect of $B_4C$ Addition on the Microstructures and Mechanical Properties of $ZrB_2-SiC$ Ceramics (in Korean)," J. Kor. Ceram. Soc., 47 [6] 578-82 (2010).   과학기술학회마을   DOI   ScienceOn
9 S. S. Hwang, A. L. Vasiliev, and N. P. Padture, "Improved Processing and Oxidation-resistance of $ZrB_2$ Ultra-high Temperature Ceramics Containing SiC Nanodispersoids," Mater. Sci. Eng. A, 464 [1-2] 216-24 (2007).   DOI   ScienceOn
10 S. Q. Guo, J. M. Yang, H. Tanaka, and Y. Kagawa, "Effect of Thermal Exposure on Strength of $ZrB_2$-based Composites with Nano-sized SiC Particles," Compos. Sci. Technol., 68 [14] 3033-40 (2008).   DOI   ScienceOn
11 F. Monteverde, "Beneficial Effects of an Ultra-fine Alpha-SiC Incorporation on the Sinterability and Mechanical Properties of $ZrB_2$," App. Phys. A, 82 [2] 329-37 (2006).
12 A. Rezaie, W. G. Fahrenholtz, and G. E. Hilmas, "Effect of Hot Pressing Time and Temperature on the Microstructure and Mechanical Properties of $ZrB_2$-SiC," J. Mater. Sci., 42 [8] 2735-44 (2007).   DOI
13 S. Kim, J.-M. Chae, S.-M. Lee, Y.-S. Oh, H.-T. Kim, and B.-K. Jang, "Change in Microstructures and Physical Properties of $ZrB_2$-SiC Ceramics Hot-pressed with a Variety of SiC Sources," Ceram. Int., in press (2013).
14 J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, R. B. Dinwiddie, W. D. Porter, and H. Wang, "Thermophysical Properties of $ZrB_2$ and $ZrB_2$-SiC Ceramics," J. Am. Ceram. Soc., 91 [5] 1405-11 (2008).   DOI   ScienceOn
15 M. Ikegami, K. Matsumura, S. Q. Guo, Y. Kagawa, and J. M. Yang, "Effect of SiC Particle Dispersion on Thermal Properties of SiC Particle-dispersed $ZrB_2$ Matrix Composites," J. Mater. Sci., 45 [19] 5420-23 (2010).   DOI
16 Y.-M. Chiang, D. Birnie III, and W. D. Kingery, "Physical Ceramics," pp. 474-77, John Wiley & Sons, Inc., USA, 1997.
17 J. Zou, G. J. Zhang, H. Zhang, Z. R. Huang, J. Vleugels, and O. Van der Biest, "Improving High Temperature Properties of Hot Pressed $ZrB_2$-20 vol% SiC Ceramic Using High Purity Powders," Ceram. Int., 39 [1] 871-76 (2013).   DOI   ScienceOn
18 ImageJ, National Institute of Health, http://rsb.info.nih.gov/ij/.
19 NIST-JANAF Thermochemical Tables, National Institute of Standards and Technology, http://kinetics.nist.gov/janaf/.
20 D. He and N. N. Ekere, "Effect of Particle Size Ratio on the Conducting Percolation Threshold of Granular Conductive-insulating Composites," J. Phys. D, 37 [13] 1848-52 (2004).   DOI   ScienceOn
21 N. Lebovka, M. Lisunova, Y. P. Mamunya, and N. Vygornitskii, "Scaling in Percolation Behaviour in Conductive-insulating Composites with Particles of Different Size," J. Phys. D, 39 [10] 2264-71 (2006).   DOI   ScienceOn
22 L. Ren, Z. Han, J. Tong, J. Li, D. Chen, and D. He, "Conductive Percolation Threshold of Conductive-insulating Granular Composites," J. Mater. Sci., 41 [13] 2157-59 (2006).   DOI
23 M. Gasch, S. Johnson, and J. Marschall, "Thermal Conductivity Characterization of Hafnium Diboride-based Ultra-high-temperature Ceramics," J. Am. Ceram. Soc., 91 [5] 1423-32 (2008).   DOI   ScienceOn
24 F. L. Riley, "Structural Ceramics : Fundamentals and Case Studies," pp. 185-87, Cambridge, United Kingdom, 2009.
25 J. B. Wachtman, W. C. Cannon, and M. J. Matthewson, "Mechanical Properties of Ceramics," 2nd Ed., pp. 212-17 John Wiley & Sons, Inc., USA, 2009.
26 H. S. Kim, "On the Rule of Mixtures for the Hardness of Particle Reinforced Composites," Mater. Sci. Eng. A, 289 [1-2] 30-33 (2000).   DOI   ScienceOn