• 제목/요약/키워드: Submicron

검색결과 531건 처리시간 0.03초

상온 이온성 액체를 이용한 미세 은 입자 제조 (Synthesis of Submicron Silver Particle Using Room Temperature Ionic Liquids)

  • 유계상
    • 공업화학
    • /
    • 제23권1호
    • /
    • pp.14-17
    • /
    • 2012
  • 다양한 종류의 상온 이온성액체를 이용한 화학적 환원법으로 미세 은 입자를 제조하였다. 이온성액체의 음이온의 종류에 따라 제조된 은 입자는 다양한 크기와 입도분포를 가지는 것이 관찰되었으며, 이는 이온성액체의 음이온이 은 입자들의 결합에 영항을 주기 때문이다. 여러 가지 이온성액체 중에서 미세 은입자를 제조하는데 있어서 가장 효과적인 이온성액체는 1-Butyl-3-methylimidazolium hexafluorophosphate였다.

마이크론 이하 단위의 제품생산 최적화를 위한 화학공정의 스케일업 (Scale-up of Optimized Chemical Processes for Micron and Submicron Products)

  • 정영미
    • 공업화학
    • /
    • 제28권1호
    • /
    • pp.17-22
    • /
    • 2017
  • 본 총설에서는 마이크론 사이즈 이하 제품에 대한 최적화적인 화학공정의 스케일업을 위한 전략을 소개한다. 최적화된 화학공정의 스케일업을 위해 구해야 할 스케일업 인자의 정의와 이를 도출하는 방법을 소개하였으며, 특히 무반응 시스템, 유반응 시스템으로 분류하여 각각에 대해 서로 다른 스케일업 인자를 찾은 기준을 소개하고, 예시를 들어 논의하였다. 본지에서 소개된 스케일업 인자를 구하는 방법론이 마이크론 사이즈 이하 제품에 대한 화학공정을 스케일업하고자 하는 엔지니어들에게 초기 지침서가 될 것으로 기대된다.

Effects of Thermal-Carrier Heat Conduction upon the Carrier Transport and the Drain Current Characteristics of Submicron GaAs MESFETs

  • Jyegal, Jang
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1997년도 추계학술대회 발표논문집:21세기를 향한 정보통신 기술의 전망
    • /
    • pp.451-462
    • /
    • 1997
  • A 2-dimensional numerical analysis is presented for thermal-electron heat conduction effects upon the electron transport and the drain current-voltage characteristics of submicron GaAs MESFETs, based on the use of a nonstationary hydrodynamic transport model. It is shown that for submicron GaAs MESFETs, electron heat conduction effects are significant on their internal electronic properties and also drain current-voltage characteristics. Due to electron heat conduction effects, the electron energy is greatly one-djmensionalized over the entire device region. Also, the drain current decreases continuously with increasing thermal conductivity in the saturation region of large drain voltages above 1 V. However, the opposite trend is observed in the linear region of small drain voltages below 1 V. Accordingly, for a large thermal conductivity, negative differential resistance drain current characteristics are observed with a pronounced peak of current at the drain voltage of 1 V. On the contrary, for zero thermal conductivity, a Gunn oscillation characteristic is observed at drain voltages above 2 V under a zero gate bias condition.

  • PDF

수열반응에 의한 고순도 극미립자 BaTiO3 분말합성 (Preparationof High Purity, Submicron BaTiO3 Powder Prepared by Hydrothermal Reaction)

  • 김경용;김윤호;손용배
    • 한국세라믹학회지
    • /
    • 제26권4호
    • /
    • pp.493-498
    • /
    • 1989
  • High purity, submicron BaTiO3 powder was prepared by a hydrothermal technique using Ba(OH)2.8H2O, TiCl4 and NH4OH as starting raw materials. The submicron BaTiO3 powder was synthesized at 130~23$0^{\circ}C$ for 2.5h to yield highly crystalline particles with a narrow particle distribution. The mole ratio of Ba(OH)2.8H2O/TiO(OH)2 was 1.5. It is possible to obtain BaTiO3 with Ba : Ti=1.00$\pm$0/01. The samples densified well at 13$25^{\circ}C$, showing a uniform and fine grain structure. The grain size ranged between 0.3 and 0.5${\mu}{\textrm}{m}$. The products obtained by hydrothermal treatment at various temperatures from 130 to 23$0^{\circ}C$ were characterized by XRD, DTA, BET and SEM etc.

  • PDF

저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조 (Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell)

  • 강상균;박용일
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Flower like Buffer Layer to Improve Efficiency of Submicron-Thick CuIn1-xGaxSe2 Solar Cells

  • Park, Nae-Man;Cho, Dae-Hyung;Lee, Kyu-Seok
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1129-1134
    • /
    • 2015
  • In this article, a study of a flower like nanostructured CdS buffer layer for improving the performance of a submicron-thick $CuIn_{1-x}Ga_xSe_2$ (CIGS) solar cell (SC) is presented. Both its synthesis and properties are discussed in detail. The surface reflectance of the device is dramatically decreased. SCs with flower like nanostructured CdS buffer layers enhance short-circuit current density, fill factor, and open-circuit voltage. These enhancements contribute to an increase in power conversion efficiency of about 55% on average compared to SCs that don't have a flower like nanostructured CdS buffer layer, despite them both having the same CIGS light absorbing layer.

Optical Failure Analysis Technique in Deep Submicron CMOS Integrated Circuits

  • Kim, Sunk-Won;Lee, Hyong-Min;Lee, Hyun-Joong;Woo, Jong-Kwan;Cheon, Jun-Ho;Kim, Hwan-Yong;Park, Young-June;Kim, Su-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper, we have proposed a new approach for optical failure analysis which employs a CMOS photon-emitting circuitry, consisting of a flip-flop based on a sense amplifier and a photon-emitting device. This method can be used even with deep-submicron processes where conventional optical failure analyses are difficult to use due to the low sensitivity in the near infrared (NIR) region of the spectrum. The effectiveness of our approach has been proved by the failure analysis of a prototype designed and fabricated in 0.18 ${\mu}m$ CMOS process.

유전체 베리어 방전형 2단 전기집진기의 인가전압 파형별 나노 및 서브마이크론 입자 집진 특성 (Nano and Submicron Sized Particle Collection with Various Voltage Waveforms for Dielectric Barrier Discharge Type 2-Stage ESP)

  • 박재홍;변정훈;황정호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1261-1266
    • /
    • 2004
  • Dielectric Barrier Discharge (DBD) in air, which has been established for the production of large quantities of ozone, is more recently being applied to a wider range of aftertreatment processes for HAPs (Hazardous Air Pollutants). Although DBD has high electron density and energy, its potential use as precharging nano and submicron particles are not well known. In this work, we measured I-V characteristics of DBD and estimated collection efficiency of the particles by DBD type 2-stage ESP. To examine the particle collection with various applied voltage waveforms of DBD for nano and submicron sized, bimodal particles were generated by a electrical tube furnace and an atomizer.

  • PDF

Electrical properties and thermal stability of Al/$WN_x$/Ti submicron contact structure

  • Kim, Yong-Tae;Sim, Hyun-Sang;Kim, Seong-Il
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2002년도 추계학술대회 발표 논문집
    • /
    • pp.72-74
    • /
    • 2002
  • A submicron contact scheme using $WN_x$ diffusion barrier has been suggested for multilevel interconnect structure. The contact resistance of $0.4\times0.48\mu\textrm{m}^2$ size Al/WN/Ti/$n^+$-Si is 120-140 $\Omega$ and the leakage current density is below than $10^{-16}$$-10^{-15}A/\mu\textrm{m}^2$. The effect of F atoms on the submicron contact has been investigated with the nuclear resonance analysis method.

  • PDF