Browse > Article
http://dx.doi.org/10.14478/ace.2016.1127

Scale-up of Optimized Chemical Processes for Micron and Submicron Products  

Chung, Young Mi (Korea University of Technology and Education, School of Energy, Materials & Chemical Engineering)
Publication Information
Applied Chemistry for Engineering / v.28, no.1, 2017 , pp. 17-22 More about this Journal
Abstract
This review deals with scale-up strategies for optimized chemical processes particularly for micron and submicron products. The method of finding scale-up factors was also introduced for two systems, a system with chemical reaction and a system without chemical reaction. This review is expected to serve as an initial guideline for process engineers who are to scale up their current chemical processes for small products of micron or submicron size.
Keywords
scale-up; scale-up factor; dimensionless number; $Damk{\ddot{o}}ehler$ number;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Philippe, P. Serp, P. Kalck, Y. Kihn, S. Bordere, D. Plee, P. Gaillard, D. Bernard, and B. Caussat, Kinetic study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition, AIChE J., 55, 450-464 (2009).   DOI
2 J. B. Romero and L. N. Johanson, Factors affecting fluidized bed quality, Chem. Eng. Prog. Symp. Ser., 58, 28-37 (1962).
3 T. M. Knowlton, S. B. R. Karri, and A. Issangya, Scale-up of fluidized-bed hydrodynamics, Powder Technol., 150, 72-77 (2005).   DOI
4 T. E. Broadhurst and H. A. Becker, Onset of fluidization and slugging in beds of uniform particles, AIChE J., 21, 238-247 (1975).   DOI
5 L. R. Glicksman, Scaling relationships for fluidized beds, Chem. Eng. Sci., 39, 1373-1379 (1984).   DOI
6 J. R. Ommen, M. Teuling, J. Nijenhuis, and B. G. M. Wachem, Computational validation of the scaling rules for fluidized beds, Powder Technol., 163, 32-40 (2006).   DOI
7 C. Sierra, F. Bonniol, R. Occelli, and L. Tadrist, Practical scaling consideration for dense gas fluidized beds interacting with the air-supply system, Chem. Eng. Sci., 64, 3717-3720 (2009).   DOI
8 J. Sanderson and M. Rhodes, Bubbling fluidized bed scaling laws: evaluation at large scales, AIChE J., 51, 2686-2694 (2005).   DOI
9 D. L. Marchisio, L. Rivautell, and A. A. Barresi, Design and scale-up of chemical reactors for nanoparticle precipitation, AIChE J., 52, 1877-1887 (2006).   DOI
10 S. Tissot, M. Farhat, D. L. Hacker, T. Anderlei, M. Kuhner, C. Comninellis, and F. Wurm, Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors, Biochem. Eng. J., 52, 181-186 (2010).   DOI
11 F. Garcia-Ochoa and E. Gomez, Bioreactor Scale-up and oxygen transfer rate in microbial processes: An overview, Biotechnol. Adv., 27, 153-176 (2009).   DOI
12 B. K. Lonsane, G. Saucedo-Castaneda, M. Raimbault, S. Roussos, G. Viniegra-Gonzalez, N. P. Ghildyal, M. Ramakrishna, and M. M. Krishnaiah, Scale-up strategies for solid state fermentation systems, Process Biochem., 27, 259-273 (1992).   DOI
13 R. Gamboa-Suasnavart, L. Marin-Palacio, J. A. Marinez-Sotelo, C. Espitia, L. Servin-Gonzalez, N. A. Valdez-Cruz, and M. A. Trujillo-Roldan, Scale-up from shake flasks to bioreactor, based on power input and Streptomyceslividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis, World J. Microbiol. Biotechnol., 29, 1421-1429 (2013).   DOI
14 J. M. Matsen, Scale-up of fluidized bed processes: Principle and practice, Powder Technol., 88, 237-244 (1996).   DOI
15 M. Perrut and J.-Y. Clavier, Supercritical fluid formulation: Process choice and scale-up, Ind. Eng. Chem. Res., 42, 6375-6383 (2003).   DOI
16 D. Weuster-Botz, D. Hekmat, R. Puskeiler, and E. Franco-Lara, Enabling technologies: fermentation and downstream processing, Adv. Biochem. Eng. Biotechnol., 105, 205-247 (2007).
17 L. Z. He and Y. Sun, Purification of lysozyme by multistage affinity filtration. Bioprocess Biosyst. Eng., 25, 155-164 (2002).   DOI
18 T. Kamiya, M. Kiminoyama, K. Nishi, and R. Misumi, Scale-up factor for mean drop diameter in batch rotor-stator mixers, J. Chem. Eng. Jpn., 43, 326-332 (2010).   DOI
19 J. T. Davies, Drop sizes of emulsions related to turbulent energy dissipation rates, Chem. Eng. Sci., 40, 839-842 (1985).   DOI
20 V. A. Atiemo-Obeng and R. V. Calabrese, Handbook of Industrial Mixing: Science and Practice, John Wiley & Sons, Hoboken, USA, 470-505 (2004).
21 J. T. Davies, A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils, Chem. Eng. Sci., 42, 1671-1676 (1987).   DOI
22 R. V. Calabrese, M. K. Francis, V. P. Mishra, and S. Phongikaroon, Measurement and analysis of drop size in batch rotor-stator mixer, Proceedings of 10th European Conference on Mixing, July 2-5, Delft, Netherlands (2000).
23 Y. Sumi and M. Kamiwano, Production method for objective size of suspension droplet in different scale of mixing devices, Japanese Patent 066284 (2002).
24 Y. F. Maa and C. Hsu, Liquid-liquid emulsification by rotor/stator homogenization, J. Control. Release, 38, 219-228 (1996).   DOI
25 F. Barailler, M. Heniche, and P. A. Tanguy, CFD analysis of a rotor-stator mixer with viscous fluids, Chem. Eng. Sci., 61, 2888-2894 (2006).   DOI
26 T. Hielscher, Ultrasonic production of nano-size dispersions and emulsions, Dans European Nano Systems Worshop - ENS 2005, Dec. 14-16, Paris, France (2005).
27 I. Sole, C. M. Pey, A. Maestro, C. Gonzalez, M. Porras, C. Solans, and J. M. Gutierrez, Nano-emulsions prepared by the phase inversion composition method: preparation variables and scale up, J. Colloid Interface Sci., 344, 417-423 (2010).   DOI
28 E. Paul and R. E. Treybal, Mixing and product distribution for a liquid-phase, second-order, competitive-consecutive reaction, AIChE J., 17, 718-724 (1971).   DOI
29 J. C. Ogbonna, H. Mashima, and H. Tanaka, Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor, Bioresour. Technol., 76, 1-8 (2001).   DOI