• Title/Summary/Keyword: Subbase

Search Result 115, Processing Time 0.024 seconds

Deformation Characteristics of Soil-Cement Mixtures under Repeated load (반복하중(反復荷重)을 받는 Soil-Cement의 변형특성(變形特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.125-131
    • /
    • 1989
  • Since the paved road suffers from various types of repeated loads for the duration of it's life, it is likely to cause permanent deformation and fatigue finaly destroying the pavement performance. Accordingly, if we are to keep the pavement performance in good condition, it is required to take staps to prevent such troubles from happening in each stage of pavement, and thus to improve the stability of pavement. We find it is quite important to settle the problems such as permanent deformation and fatigue rupture by repeated loads both on subbase course and on subgrade. In this regard, we examined the deformation characteristics of soil cements, on which repeated loads are applied. For the effective examination, we chose to use soil-cements made of cohesive soil and sandy soil respectively, which had $20kg/cm^2$ of unconfined compression strength, at the age of 7 days. The experimental results are: 1. The elastic modulus of soil cement from sandy soil is higher than that of soil cement from cohesive soil. 2. The elastic modulus thends to decrease as the repeated loads rund up to 1,000 times, while increasing between 1,000 times and $1{\times}10^5$ times. 3. Unconfined compression strength is seen to increase about 30%.

  • PDF

Rubblization of Thick Concrete Pavement (두꺼운 콘크리트포장의 원위치파쇄 기층화공법)

  • Lee Seung-Woo;Han Seung-Hwan;Ko Suck-Bum;Kim Ji-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.105-114
    • /
    • 2006
  • A popular alternative to extend the life of aged pavement is asphalt overlay. However, it has a very serious and inherent shortcoming in deterring a reflection crack. Although joint-rehabilitation and stress-relief techniques have been applied to deter such reflection cracks in aged pavement, the techniques had a limited success only in slowing down the progress of a reflection crack. Rubblization technique rubblizes the concrete pavement slab in situ and uses the rubblized slab as the base material. Then, pavement overlay is applied to finish off the rehabilitation of aged pavement. This rubblization technique has the advantage of solving the problem of reflection cracking completely. When rubblization technique is applied, the upper layer of aged concrete pavement is rubblized between 40mm-70mm in depth. However, the lower layer is typically rubblized more than 100mm in depth. Nevertheless, it is difficult to turn the entire concrete pavement of more than 30cm in depth into rubblized aggregate of appropriate size. Thus, a simulation experiment was carried out to find the appropriate rubblized depth, which avoids the reflection cracking and still maintains the function of subbase, by varying the depth of rubblized depth in loom increments of 0cm, 10cm, and 20cm. The result indicated the optimum rubblized depth was 10cm (Lee, 2006). Additionally, a small rubblizinge equipment was developed in order to derive the rubblization technique appropriate for thick concrete pavement. This equipment was tested out on an experimental pavement, which was constructed with the same standard and specification for the road in actual use, by varying its rubblizing head shape and energy as well as the effective area of rubblization. This experiment led to a prototype equipment for rubblization of thick concrete pavement. The prototype was put into use on a highway, undergoing a test construction and monitoring afterwards. This entire process was necessary for the validation of the proposed rubblization technique.

  • PDF

Structural assessment of Anti-Freezing Layer with use of Falling Weight Deflectormeter Deflection (Falling Weight Deflectormeter를 이용한 동상방지층의 구조적 특성 분석)

  • Lee, Moon-Sup;Kim, Boo-Il;Jeon, Sung-Il;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • Until now, the thickness design of anti-freezing layer has been empirically conducted using the frost depth determined from the freezing index. This approach cannot consider the structural properties of anti-freezing layer, which can cause the over-design of pavement structure. This paper presents results of structural evaluation of anti-freezing layer using the Falling Weight Deflectormeter (FWD) deflections. The FWD testing was directly conducted on top of the subbase layer located at the embankment, cutting, and boundary area of each section. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer. The deflection reduction rates are 15~55% in the embankment, 11~64% in the cutting, and 2~38% in the boundary, respectively. It was also found that the use of antifree zing layer enables to reduce the Surface Curvature Index (SCI) values up to 24 percent. Fatigue lives show that pavement structure with antifreezing layer are about two times higher than the those without anti-freezing layer. This fact indicates that the anti-freezing layer should be considered as a structural layer in the asphalt pavement system.

Development of Three-Dimensional Finite Element Model for Structural Analysis of Airport Concrete Pavements (공항 콘크리트 포장 구조해석을 위한 3차원 유한요소 모형 개발)

  • Park, Hae Won;Shim, Cha Sang;Lim, Jin Seon;Joe, Nam Hyun;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading. METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model. RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis. CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.

A Study on Durability Test of Cemented Soils (시멘트 혼합토의 내구성 평가법에 관한 연구)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.79-86
    • /
    • 2012
  • Cemented soils have been used for subbase or base materials of roads, backfill materials of retaining walls and cofferdam. Such cemented soils can be degraded due to repeated wetting and drying or various weathering actions. Unlike rocks, a standard method was not defined for evaluating the durability of cemented soils. In this study, a slaking durability test and an ultrasound cleaner were used for developing a new durability test method for cemented soils. For durability tests, cemented sands with different cement ratios (4, 6, 8, and 12%) with cylindrical specimens were prepared and then air cured or under-water cured for three days. Three-day-cured specimens were dried for one day and then submerged for one day before testing. The weight loss after the slake durability test or ultrasonic cleaner operation for 10 or 20 min was measured and used for assessing durability. When a cement ratio was 4%, the weight loss from ultrasonic cleaner test was 7-25% but that from slake durability test was as much as 30-60%. For specimens with cement ratio of more than 8%, the weight loss was less than 10% from both tests. A durability index increased with increasing a cement ratio. The durability index of under-water cured specimen was higher than that of air cured specimen. The ultrasonic cleaner test was found to be an effective tool for durability assessment of cemented sands rather than the slake durability test.

A Study on Crushing and Engineering Characteristics Caused by Compaction of Recycled Aggregates (다짐으로 인한 순환골재의 파쇄 및 공학적 특성에 관한 연구)

  • Park, Sung-Sik;Chen, KeQiang;Lee, Young-Jae;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.35-44
    • /
    • 2017
  • A large amount of recycled aggregates was produced and crushed from old buildings and pavements. In this study, when these aggregates are re-used in subbase or subgrade materials in near construction sites, their engineering characteristics caused by crushing are investigated in terms of permeability and shear strength. Three different sizes of aggregates (31.5-45.0 mm, 19.0-31.5 mm, 9.5-19.0 mm) and their mixtures, a total of 7 types of aggregates were used in compaction tests (modified D and B methods). After compaction tests, aggregates were sieved and analyzed with four different breakage factors ($B_{15}$, $C_c$, $B_{10}$, $B_r$). The D compaction method gave 2.0-8.0 times more crushable than B compaction method. The breakage factors for the largest size aggregate was 1.4-3.0 times higher than those of the smallest size aggregate. For aggregates with 5.6-9.5 mm sizes, the samples were prepared with $B_{15}$ of 1, 3, 10, 20, 30, 50, 60, and 70 for permeability and direct shear tests. As $B_{15}$ increased, the hydraulic conductivity decreased up to 1/22 for $B_{15}=50$. As $B_{15}$ increased from 1 to 50, the peak friction angle increased from $46.1^{\circ}$ to $54.5^{\circ}$. On the other hand, the friction angle decreased after $B_{15}=60$.

Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete (국산 매립회의 골재특성 평가 및 매립회 콘크리트의 내구 성능 평가)

  • Lee, Bong-Chun;Jung, Sang-Hwa;Kim, Joo-Hyung;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.311-320
    • /
    • 2011
  • Fly ash (FA), byproduct from power plant has been actively used as mineral admixture for concrete. However, since bottom ash (BA) is usually used for land reclaim or subbase material, more active reuse plan is needed. Pond ash (PA) obtained from reclaimed land is mixed with both FA and BA. In this study, 6 PA from different domestic power plant are prepared and 5 different replacement ratios (10%, 20%, 30%, 50%, and 70%) for fine aggregate substitutes are considered to evaluate engineering properties of PA as fine aggregate and durability performance of PA concrete. Tests for fine aggregate of PA for fineness modulus, density and absorption, soundness, chloride and toxicity content, and alkali aggregate reaction are performed. For PA concrete, durability tests for compressive strength, drying shrinkage, chloride penetration/diffusion, accelerated carbonation, and freezing/thawing are performed. Also, basic tests for fresh concrete like slump and air content are performed. Although PA has lower density and higher absorption, its potential as a replacement material for fine aggregate is promising. PA concrete shows a reasonable durability performance with higher strength with higher replacement ratio. Finally, best PA among 6 samples is selected through quantitative classification, and limitation of PA concrete application is understood based on the test results. Various tests for engineering properties of PA and PA concrete are discussed in this paper to evaluate its application to concrete structure.

An Experimental Study on Determination of Dry Density of Sand Mixed with Gravels (자갈 섞인 모래의 건조밀도 계산에 관한 실험 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.37-46
    • /
    • 2013
  • Various sizes of gravels are included in the most field soils that are utilized for civil constructions. Especially, the small amounts of gravel are often included in selected soils for backfill materials, earth dams, and subbase ground. In such cases, the small amounts of mixed gravel and its shape may influence the determination of dry density of soils, which results in an inaccurate degree of compaction for soils in the field. In this study, a dry density of sand with various gravel contents (0, 10, 17, 23, 29 and 33%) and three different sizes (2.0-2.36, 3.35-4.75, 5.6-10.0 mm) was experimentally investigated for compacted or loosely packed conditions. The loosely packed sand with gravels was simulated by pouring sand into compaction mould and its density was determined. When a 33% of gravel content was mixed with sand, its dry density increased up to 15-20% for compacted specimen and 20-23% for loosely packed specimen. When a gravel content and size were the same, a dry density of compacted specimen was $0.1-0.16g/cm^3$ higher than that of loosely packed specimen. Even though the same gravel content was used, a dry density of sand with big gravels was $0.04-0.08g/cm^3$ higher than that of sand with small gravels for compacted specimen and $0.03-0.05g/cm^3$ for loosely packed specimen.

Prediction of Crack Pattern of Continuously Reinforced Concrete Track Induced by Temperature Change and Shrinkage of Concrete (온도 변화와 콘크리트 수축에 의한 연속철근 콘크리트궤도의 균열 발생 패턴 예측)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.270-280
    • /
    • 2014
  • In this study, to examine the causes of cracks in continuously reinforced concrete tracks (CRCTs) and the main factors affecting cracking, a field survey on the status of cracks and crack patterns in the Gyeong-bu high speed line was conducted, and the crack patterns of CRCT due to the temperature difference between the top of the slab (TCL) and the bottom of the subbase (HSB) and the drying shrinkage of concrete were predicted by a nonlinear finite element model considering the structure of CRCT. The results of the numerical analysis show that cracks will be developed at the interface between the sleeper and the TCL, and under the sleeper due to the temperature difference and concrete shrinkage. This corresponds well to the crack locations found in the field. Also, it is found that the most significant factors are the coefficient of thermal expansion with respect to the temperature difference, and the drying shrinkage strain with respect to shrinkage. According to the results, the reinforcement ratio should be carefully determined considering the structures of CRCT because the crack spacing is not always proportional to the reinforcement ratio due to the sleepers embedded in the TCL.

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF