• Title/Summary/Keyword: Sub1

Search Result 21,670, Processing Time 0.044 seconds

A Study on Optimization of Manufacturing Condition for LiNi1/3Mn1/3Co1/3O2-based Cathode Electrode (LiNi1/3Mn1/3Co1/3O2계 정극활물질을 적용한 전극 제조조건 최적화 연구)

  • Kim Hyun-Soo;Kim Sung-Il;Lee Chang-Woo;Moon Seong-In;Kim Woo-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 2006
  • A fabrication condition of the cathode electrode was optimized in a lithium secondary battery. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ powders were used as a cathode material. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$/Li cells were prepared with a certain formulation and their cycleability and rate-capability were evaluated. Optimum electrode composition simulated from the evaluated value was 86.3: 5.6: 8.1 in mass $\%$ of active material: binder: conducting material. Discharge capacity decreased markedly as the press ratio exceeded $30\%$ during preparation of the electrode. Discharge performance at a high current rate deteriorated abruptly as the electrode thickness was over $120{\mu}m$.

Application of Flory-Treszczanowicz-Benson model and Prigogine-Flory-Patterson theory to Excess Molar Volume of Binary Mixtures of Ethanol with Diisopropyl Ether, Cyclohexane and Alkanes (C6-C9)

  • Kashyap, Pinki;Rani, Manju;Tiwari, Dinesh Pratap;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.257-265
    • /
    • 2020
  • Densities (ρ) for binary mixtures of ethanol (1) + diisopropyl ether (DIPE) or cyclohexane or alkane (C6-C9) (2) were measured at 298.15 K, 308.15 K and 318.15 K. The excess molar volume (VEm) of binary mixtures was calculated using ρ data and correlated with Redlich-Kister polynomial equation. The VEm values for binary mixtures of ethanol (1) + cyclohexane or n-alkane (C6-C9) (2) were positive, whereas for ethanol (1) + DIPE (2) these were negative. The magnitude of VEm values follows the order: cyclohexane > n-nonane > n-octane > n-heptane > n-hexane > DIPE. The VEm values have been interpreted qualitatively and also quantitatively in terms of Flory-Treszczanowicz-Benson (FTB) model and Prigogine-Flory-Patterson (PFP) theory. The values VEm predicted using FTB model agree well with experimental VEm values at all mole fractions. But the PFP theory describes well VEm data in ethanol-rich region (x1 > 0.5) for all binary mixtures and is able to predict the sign of VEm vs x1 curve for ethanol-lean region (x1 < 0.5) except for ethanol (1) + nonane (2) mixtures.

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells

  • Md. Mahbubur, Rahman;Hyeong Cheol, Kang;Kicheon, Yoo;Jae-Joon, Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.453-461
    • /
    • 2022
  • A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.

Vibrational Relaxation and Bond Dissociation in Methylpyrazine on Collision with N2 and O2

  • Young-Jin Yu;Sang Kwon Lee;Jongbaik Ree
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • The present study uses quasi-classical trajectory procedures to examine the vibrational relaxation and dissociation of the methyl and ring C-H bonds in excited methylpyrazine (MP) during collision with either N2 or O2. The energy-loss (-ΔE) of the excited MP is calculated as the total vibrational energy (ET) of MP is increased in the range of 5,000 to 40,000cm-1. The results indicate that the collision-induced vibrational relaxation of MP is not large, increasing gradually with increasing ET between 5,000 and 30,000 cm-1, but then decreasing with the further increase in ET. In both N2 and O2 collisions, the vibrational relaxation of MP occurs mainly via the vibration-to-translation (V→T) and vibration-to-vibration (V→V) energy transfer pathways, while the vibration-to-rotation (V→R) energy transfer pathway is negligible. In both collision systems, the V→T transfer shows a similar pattern and amount of energy loss in the ET range of 5,000 to 40,000cm-1, whereas the pattern and amount of energy transfer via the V→V pathway differs significantly between two collision systems. The collision-induced dissociation of the C-Hmethyl or C-Hring bond occurs when highly excited MP (65,000-72,000 cm-1) interacts with the ground-state N2 or O2. Here, the dissociation probability is low (10-4-10-1), but increases exponentially with increasing vibrational excitation. This can be interpreted as the intermolecular interaction below ET = 71,000 cm-1. By contrast, the bond dissociation above ET = 71,000 cm-1 is due to the intramolecular energy flow between the excited C-H bonds. The probability of C-Hmethyl dissociation is higher than that of C-Hring dissociation.

Microwave Dielectric Characteristics of Aluminum Magnesium Tantalate Solid Solutions with Variations of Ionic Polarizability and Crystal Structure (이온 분극률과 결정구조에 따른 Aluminum Magnesium Tantalate 고용체의 마이크로파 유전특성)

  • 최지원;하종윤;강종윤;윤석진;윤기현;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.119-122
    • /
    • 2002
  • The calculated and measured dielectric constant of (1-x)(Al$\sub$1/2/Ta$\sub$1/2/)O$_2$-x(Mg$\sub$1/3/Ta$\sub$2/3/)O$_2$(O$\leq$x$\leq$1.0) solid solutions were investigated by variations of ionic polarizability and crystal structure. (Al$\sub$1/2/Ta$\sub$1/2/)O$_2$ and (Mg$\sub$1/3/Ta$\sub$2/3/)O$_2$were orthorhombic and tetragonal trirutile structure, respectively. When (Al$\sub$1/2/Ta$\sub$1/2/)O$_2$ was substituted by (Mg$\sub$1/3/Ta$\sub$2/3/)O$_2$, the phase transformed to tetragonal structure over 60 mole%. Because the ionic radius of (Mg$\sub$1/3/Ta$\sub$2/3/)O$_2$was slightly bigger than one of (A1$\sub$1/2/Ta$\sub$1/2)O$_2$, the cell parameters increased with an increase of (Mg$\sub$1/3/Ta$\sub$2/3/)O$_2$ substitution. The measured dielectric constant increased with an increase of (Mg$\sub$1/3/Ta$\sub$2/3/)O$_2$ substitution and coincided with dielectric mixing rule and the calculated dielectric constant with the molecular additivity rule. There were some differences between the measured and the calculated dielectric constant. The reason of the lowered dielectric constant comparing with the calculated one was compressed stress due to the electronic structure of tantalum.

  • PDF

A Study on Electrochemical Characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 Mixed Cathode for Li Secondary Battery (리튬2차전지용 LiCoO2/LiNi1/3Mn1/3Co1/3O2계 복합정극의 전기화학적 특성 연구)

  • Kim Hyun-Soo;Kim Sung-Il;Eom Seung-Wook;Kim Woo-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • In this study, the $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the content of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ increased in a mixed cathode, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability was deteriorated. On the contrary the rate capability of the cathode enhanced, but the reversible specific capacity and cycleability were deteriorated, increasing the content of $LiCoO_2$ in the mixed cathode. The cell of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ ($50:50 wt\%$) mixed cathode delivered a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell showed very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.

Effect of Mg Additive in the Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10+δ(110 K phase) Superconductors (Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10+δ(110 K 상)산화물 고온초전도체에 Mg 첨가에 따른 영향)

  • 이민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.522-531
    • /
    • 2003
  • Samples with the nominal composition, B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+{\delta}}$ high- $T_{c}$ superconductors containing MgO as an additive were fabricated by a solid-state reaction method. Samples with MgO of 5~30 wt% each were sintered at 820~86$0^{\circ}C$ for 24 hours. The structural characteristics, critical temperature, grain size and image of mapping with respect to MgO contents were analyzed by XRD(X-Ray Diffraction), SEM(Scanning Electron Microscope) and EDS(Energy dispersive X-ray spectrometer) respectively. As MgO contents increased, intensity of MgO Peaks and ratio of Bi-2212 phase in superconductors intensified and the proportion of the phase transition from Bi-2223 to Bi-2212 was increased.

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong;Lee, Seon-Jin;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.272-278
    • /
    • 2021
  • In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.

ESTIMATE FOR BILINEAR CALDERÓN-ZYGMUND OPERATOR AND ITS COMMUTATOR ON PRODUCT OF VARIABLE EXPONENT SPACES

  • Guanghui, Lu;Shuangping, Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1471-1493
    • /
    • 2022
  • The goal of this paper is to establish the boundedness of bilinear Calderón-Zygmund operator BT and its commutator [b1, b2, BT] which is generated by b1, b2 ∈ BMO(ℝn) (or ${\dot{\Lambda}}_{\alpha}$(ℝn)) and the BT on generalized variable exponent Morrey spaces 𝓛p(·),𝜑(ℝn). Under assumption that the functions 𝜑1 and 𝜑2 satisfy certain conditions, the authors proved that the BT is bounded from product of spaces 𝓛p1(·),𝜑1(ℝn)×𝓛p2(·),𝜑2(ℝn) into space 𝓛p(·),𝜑(ℝn). Furthermore, the boundedness of commutator [b1, b2, BT] on spaces Lp(·)(ℝn) and on spaces 𝓛p(·),𝜑(ℝn) is also established.