Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01445

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability  

Shin, Ji-Woong (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
Lee, Seon-Jin (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
Nam, Yun-Chae (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
Son, Jong-Tae (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 272-278 More about this Journal
Abstract
In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.
Keywords
Yttrium Doping; Conductive Polymer Coating; Cathode Material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Li, G. Chen, B. Zhang, J. Xiu, Solid Sate Commun., 2008, 146(3-4), 115-120.   DOI
2 Y. S. Lee, K. S. Lee, Y. K. Sun, Y. M. Lee and D. W. Kim, J. Power Sources., 2011, 196(16), 6997-7001.   DOI
3 B. C. Jang and J. T. Son, J. Nanosci. Nanotechnol., 2016, 16(10), 10698-10701.   DOI
4 Y. G. Ptushinskii, Low Temp. Phys., 2004, 30(1), 1-26.   DOI
5 J. W. Shin and J. T. Son, J. New Mater. Electrochem. Syst., 2018, 21(2), 71-75.   DOI
6 Y. Wen, B. Wang, G. Zeng, K. Nogita, D.Ye and L. Wang, Chem Asian J., 2015, 10(3), 661-666.   DOI
7 S . Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa and I. Nakai, Inorg. Chem., 2012, 51(11), 6211-6220.   DOI
8 P.-Y. Liao, J.-G. Duh, H.-S. Sheu, J. Power Sources., 2008, 183(2), 766-770.   DOI
9 C.Q. Xu, Y.W. Tian, Y.C. Zhai, L.Y. Liu, Mater. Chem. Phys., 2006, 98(2-3), 532-538.   DOI
10 S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin and D. W. Kim, ACS Appl Mater. & Interfaces, 2014, 6(4), 2546-2552.   DOI
11 D. Lepage, C. Michot, G. Liang, M. Gauthier, Schougaard and S. B. Angew, Chem. Int. Ed., 2011, 50(30), 6884.   DOI
12 L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou and C. Zhan, Electrochim. Acta., 2008, 53(28), 8319-8323.   DOI
13 M.D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurback, U. Heider, L. Heider, J. Electrochem, Soc, 1999, 146, 1279.   DOI
14 R.V. Mangalaraja, J. Mouzon, P. Hedstrom, I. Kero, K.V.S. Ramam, C.P. Camurri, M. Oden, J. Mater. Process. Technol., 2008, 208(1-3), 415-422.   DOI
15 J.A. Dean, Lange's Handbook of Chemistry, fifteenth ed., 1999.
16 J.R. Reimers, E. Rossen, C.D. Jones, J.R. Dahn, Solid State Ionics., 1993, 61(4), 335-344.   DOI
17 G.Q. Liu, H.T. Kuo, R.S. Liu, C.H. Shen, D.S. Shy, X.K. Xing, J.M. Chen, J. Alloys Compd., 2010, 496(1-2), 512-516.   DOI
18 G.-W. Yoo, T.-J. Park, J.-T. Son, J. New Mater. Electrochem. Syst., 2015, 18(1), 009-016.   DOI
19 Q. Cao, H.P. Zhang, G.J. Wang, Q. Xia, Y.P. Wu, H.Q. Wu, Electrochem. Commun., 2007, 9(5), 1228-1232.   DOI
20 A.J. Bard, L.R. Faulkner, Electrochemical Methods., 2001.
21 G.V. Subba Rao, B.V.R. Chowdari, H.J. Lindner, J. Power Sources., 2001, 97, 313-315.