Browse > Article
http://dx.doi.org/10.33961/jecst.2022.00262

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells  

Md. Mahbubur, Rahman (Department of Applied Chemistry, Konkuk University)
Hyeong Cheol, Kang (Department of Energy Materials Science and Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University)
Kicheon, Yoo (Department of Energy Materials Science and Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University)
Jae-Joon, Lee (Department of Energy Materials Science and Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.4, 2022 , pp. 453-461 More about this Journal
Abstract
A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.
Keywords
Dye-sensitized solar cells; Raoult's law; Binder-free $TiO_2$ paste; 1-Octanol; Carbon tetrachloride; Low-temperature; High viscosity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 B. O'Regan and M. Gratzel, Nature, 1991, 353, 737-740.   DOI
2 K. Sharma, V. Sharma, and S. S. Sharma, Nanoscale Res. Lett., 2018, 13, 381.
3 D. Devadiga, M. Selvakumar, P. Shetty, and M. S. Santosh, J. Power Sources, 2021, 493, 229698.
4 K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, Chem. Commun., 2015, 51, 15894-15897.   DOI
5 J.-M. Ji, H. Zhou, Y. K. Eom, C. H. Kim, and H. K. Kim, Adv. Energy Mater., 2020, 10(15), 2000124.
6 G. Li, L. Sheng, T. Li, J. Hu, P. Li, and K. Wang, Sol. Energy, 2019, 177, 80-98.   DOI
7 H. C. Weerasinghe, F. Huang, and Y.-B. Cheng, Nano Energy, 2013, 2(2), 174-189.
8 K. Kim, G. W. Lee, K. Yoo, D. Y. Kim, J. K. Kim, and N. G. Park, J. Photochem. Photobiol. A: Chem., 2009, 204(2-3), 144-147.   DOI
9 S. Sarker, N. C. D. Nath, M. M. Rahman, S.-S. Lim, A. J. S. Ahammad, W.-Y. Choi, and J.-J. Lee, J. Nanosci. Nanotechnol., 2012, 12(7), 5361-5366.   DOI
10 M. M. Rahman, H.-Y. Kim, Y.-D. Jeon, I.-S. Jung, K.-M. Noh, and J.-J. Lee, Bull. Korean Chem. Soc., 2013, 34(9), 2765-2768.   DOI
11 M. M. Rahman, H.-S. Son, S.-S. Lim, K.-H. Chung, and J.-J. Lee, J. Electrochem. Sci. Technol., 2011, 2(2), 110-115.   DOI
12 H.-P. Jen, M.-H. Lin, L.-L. Li, H.-P. Wu, W.-K. Huang, P.-J. Cheng, and E. W.-G. Diau, ACS Appl. Mater. Interfaces, 2013, 5(20), 10098-10104.   DOI
13 T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, and H. Arakawa, Sol. Energy Mater. Sol. Cells, 2010, 94(5), 812-816.   DOI
14 G. Boschloo, H. Lindstrom, E. Magnusson, A. Holmberg, and A. Hagfeldt, J. Photochem. Photobiol. A, 2002, 148(1-3), 11-15.   DOI
15 J. H. Yum, S. S. Kim, D. Y. Kim, and Y. E. Sung, J. Photochem. Photobiol. A, 2005, 173(1), 1-6.   DOI
16 L. Grinis, S. Kotlyar, S. Ruhle, J. Grinblat, and A. Zaban, Adv. Funct. Mater., 2010, 20(2), 282-288.   DOI
17 H. W. Chen, C. P. Liang, H. S. Huang, J. G. Chen, R. Vittal, C. Y. Lin, C. W. W. Kevin, and K. C. Ho, Chem. Commun., 2011, 47, 8346-8348.   DOI
18 S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, J. Photochem. Photobiol. A, 2004, 164(1-3), 93-96.   DOI
19 S. I. Cha, B. K. Koo, K. H. Hwang, S. H. Seo, and D. Y. Lee, J. Mater. Chem., 2011, 21, 6300-6304.   DOI
20 X. Li, H. Lin, J. Li, N. Wang, C. Lin, and L. Zhang, J. Photochem. Photobiol. A, 2008, 195(2-3), 247-253.   DOI
21 N.-G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, and Y.-J. Shin, Adv. Mater., 2005, 17(19), 2349-2353.   DOI
22 H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, J. Photochem. Photobiol. A: Chem., 2010, 213(1), 30-36.   DOI
23 M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, Nat. Mater., 2005, 4, 607-611.   DOI
24 Y. Li, W. Lee, D.-K. Lee, K. Kim, N.-G. Park, and M. J. Ko, Appl. Phys. Lett., 2011, 98, 103301.
25 J. H. Yune, I. Karatchevtseva, G. Triani, K. Wagner, and D. Officer, J. Mater. Res., 2013, 28(3), 488-496.   DOI
26 P. J. Holliman, A. Connell, M. Davis, M. Carnie, D. Bryant, and E. W. Jones, Mater. Lett., 2019, 236, 289-291.   DOI
27 F.-M. Raoult, C. R. Hebd. Seances Acad. Sci., 1887, 104, 1430-1433.
28 M. M. Rahman, M. J. Ko, and J.-J. Lee, Nanoscale, 2015, 7, 3526-3531.   DOI
29 M. M. Rahman, S. Y. Im, and J.-J. Lee, Nanoscale, 2016, 8, 5884-5891.   DOI
30 A. N. Fletcher, J. Phys. Chem., 1969, 73(7), 2217-2225.   DOI
31 L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan, and O. P. Siclovan, Sol. Energy Mater. Sol. Cells, 2006, 90(7-8), 1041-1051.   DOI
32 Y.-S. Lin, M.-T. Chen, Y.-F. Lin, S.-J. Yang, and J.-L. Lin, Appl. Surf. Sci., 2006, 252(16), 5892-5899.   DOI
33 K.-H. Chung, M. M. Rahman, H.-S. Son, and J.-J. Lee, Int. J. Photoenergy, 2012, 2012, 215802.
34 J.-J. Lee, M. M. Rahman, S. Sarker, N. C. Deb Nath, A.J. S. Ahammad, and J. K. Lee, B. Attaf(Ed.), in Composite materials for medicine and nanotechnology, Intech, Croatia, 2011, 181.
35 M. M. Rahman, N. C. D. Nath, and J.-J. Lee, Isrl. J. Chem., 2015, 55(9), 990-1001.
36 M. M. Rahman, Materials, 2021, 14(21), 6563.