• Title/Summary/Keyword: Sub-structure synthesis method

Search Result 204, Processing Time 0.028 seconds

The synthesis and properties of point defect structure of Cu2-XZnSnS4 (x=0.1, 0.2, and 0.3)

  • Bui D. Long;Le T. Bang
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Cu-based sulfides have recently emerged as promising thermoelectric (TE) materials due to their low cost, non-toxicity, and abundance. In this research, point defect structure of Cu2-xZnSnS4 (x=0.1, 0.2, 0.3) samples were synthesized by the mechanical alloying method. Mixed powders of Cu, Zn, Sn and S were milled using high energy ball milling at a rotation speed of 300 rpm in Ar atmosphere. The milled Cu2-xZnSnS4 powders were heat-treated at 723 K for 24 h, and subsequently consolidated using spark plasma sintering (SPS) under an applied pressure of 60 MPa for 15 min. The thermal conductivity of the sintered Cu2-xZnSnS4 samples was evaluated. A well-defined Cu2-xZnSnS4 powders were successfully formed after milling for 16 h, with the particle sizes mostly distributed in the range of 60-100 nm. The lattice constants of aand cdecreased with increasing composition value x. The thermal conductivity of sintered x=0.1 sample exhibited the lowest value and attained 0.93 W/m K at 673 K.

Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process (염 보조 초음파 분무 열분해 공정을 이용한 BaTiO3 나노입자의 합성과 광학적 성질)

  • Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.

A study on the estimation of an equivalent system of a local vibration system of a huge structure and the Optimum Structural Modification Method (거대 구조물의 국부진동계의 등가계 산출과 이를 이용한 최적구조변경법)

  • 황문주;박석주;이기문
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.364-369
    • /
    • 1997
  • It is very difficult to execute the vibration analysis of a huge structure, which takes up much time and expense. In this paper we intend to make the equivalent system of a local vibration system of a huge structure with a view to improving the dynamic characteristics and reducing time and expense. First of all, upper deck structure model is maded. And we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the upper deck structure model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. To make the equivalent system, we give boundary condition to sub-structure that want to be modified and execute the Sensitivity Analysis Method and the Optimum Structural Modification Method. And we execute the structural modification of the equivalent system.

  • PDF

Study on the Synthesis by Milling and Solid-State Reaction Method and Electrochemical Properties of LiNiO2 (기계적 혼합과 고상법에 의한 LiNiO2의 합성과 전기화학적 특성)

  • Kim, Hunuk;Youn, SunDo;Lee, Jaecheon;Park, HyeRyoung;Song, Myoungyaup
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.319-325
    • /
    • 2005
  • [ $LiNiO_2$ ] was synthesized by the solid-state method after mixing $LiOH{\cdot}H_2O$ and $Ni(OH)_2$ with SPEX mill. The optimum condition for the synthesis of $LiNiO_2$ was the calcination at $750^{\circ}C$ for 30h in $O_2$ stream after milling for 1 h. The $LiNiO_2$ synthesized under this condition showed relatively large value of $I_{003}/I_{104}$ and relatively small value of R-factor. When $LiNiO_2$ was cycled in 2.7$\~$4.15 V at 0.1C-rate, the first discharge capacity was not very large (145.8 mAh/g) but it showed good cycling performance. When $LiNiO_2$ was cycled in 2.7$\~$4.2 V at 0.1C-rate, the first discharge capacity was large but ,it showed poor cycling performance probably because of the transition of H2 hexagonal structure to H3 hexagonal structure. In addition, when $LiNiO_2$ was cycled in 1.0$\~$4.8 V at 1/24C- rate, the first discharge capacity was very large (257.7 mAh/g) and the discharge capacity increased with the number of cycles.

Synthesis of (Ni,Mg)Al2O4 Ceramic Nano Pigment by a Polymerized Complex Method (착체중합법을 이용한 (Ni,Mg)Al2O4 Cyan 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • Here, we report preparation of cyan ceramic nano-pigment for inkjet printing and the Ni substitutional effects on the cyan color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of nickel-based cyan ceramic nano-pigments. Various compositions of $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using the polymerized complex method. The powder was then preheated at $400^{\circ}C$ for 5 h and finally calcined at $1000^{\circ}C$ for 5 h. XRD patterns of $Ni_xMg_{1-x}Al_2O_4$ showed a single phase of the spinel structure in all the compositions. The particle sizes ranged from 20 to 50 nm in TEM observations. The characteristics of the color tones of $Ni_xMg_{1-x}Al_2O_4$ were analyzed by UV-Visible spectroscopy and CIE $L^*a^*b^*$ measurement. CIE $L^*a^*b^*$ measurement results indicate that the pigment color changes from light cyan to deep cyan due to the decrease of the $a^*$ and $b^*$ values with an increase of an Ni substitutional amount. In addition, the thermal stability and the binding nature of $Ni_xMg_{1-x}Al_2O_4$ are also discussed using TG-DSC and FT-IR results respectively.

Synthesis and physicochemical characterization of NixZnx-Fe2O4/MWCNT nanostructures as enzyme mimetics with peroxidase-like catalytic activity

  • Salarizadeh, Navvabeh;Sadri, Minoo;Hosseini, Hassan;Sajedi, Reza. H.
    • Carbon letters
    • /
    • v.24
    • /
    • pp.103-110
    • /
    • 2017
  • Carbon-based magnetic nanostructures in several instances have resulted in improved physicochemical and catalytic properties when compared to multi-wall carbon nanotubes (MWCNTs) and magnetic nanoparticles. In this study, magnetic MWCNTs with a structure of $Ni_xZn_xFe_2O_4/MWCNT$ as peroxidase mimics were fabricated by the one-pot hydrothermal method. The structure, composition and morphology of the nanocomposites were characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy and transmission electron microscopy. The magnetic properties were investigated with a vibrating sample magnetometer. The peroxidase-like catalytic activity of the nanocomposites was investigated by colorimetric and electrochemical tests with 3,3',5,5'-tetramethylbenzidine (TMB) and $H_2O_2$ as the substrates. The results show that the synthesis of the nanocomposites was successfully performed. XRD analysis confirmed the crystalline structures of the $Ni_xZn_xFe_2O_4/MWCNT$ nanohybrids and MWCNTs. The main peaks of the $Ni_xZn_xFe_2O_4/MWCNT$s crystals were presented. The $Ni_{0.25}Zn_{0.25}Fe_2O_4/MWCNT$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalysts showed nearly similar physicochemical properties, but the $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalyst was more appropriate than the $Ni_{0.25}Zn_{0.25}Fe_2O_4/MWCNT$ nanocatalyst in terms of the magnetic properties and catalytic activity. The optimum peroxidase-like activity of the nanocatalysts was obtained at pH 3.0. The $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalyst exhibited a good peroxidase-like activity. These magnetic nanocatalysts can be suitable candidates for future enzyme-based applications such as the detection of glucose and $H_2O_2$.

Water-stable solvent dependent multicolored perovskites based on lead bromide

  • Sharipov, Mirkomil;Hwang, Soojin;Kim, Won June;Huy, Bui The;Tawfik, Salah M.;Lee, Yong-Ill
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.187-197
    • /
    • 2022
  • The synthesis of organic and hybrid organic-inorganic perovskites directly from solution improves the cost- and energy-efficiency of processing. To date, numerous research efforts have been devoted to investigating the influence of the various solvent parameters for the synthesis of lead halide perovskites, focused on the effects of different single solvents on the efficiency of the resulting perovskites. In this work, we investigated the effect of solvent blends for the first time on the structure and phase of perovskites produced via the Lewis base vapor diffusion method to develop a new synthetic approach for water-stable CsPbBr3 particles with nanometer-sized dimensions. Solvent blends prepared with DMF and water-miscible solvents with different Gutmann's donor numbers (DN) affect the Pb ions differently, resulting in a variety of lead bromide species with various colors. The use of a DMF/isopropanol solvent mixture was found to induce the formation of the Ruddlesden-Popper perovskite based on lead bromide. This perovskite undergoes a blue color shift in the solvated state owing to the separation of nanoplatelets. In contrast, the replacement of isopropanol with DMSO, which has a high DN, induces the formation of spherical CsPbBr3 perovskite nanoparticles that exhibit green emission. Finally, the integration of acetone in the solvent system leads to the formation of lead bromide complexes with a yellow-orange color and the perovskite CsPbBr3.

Synthesis and Electrochemical Properties of Li[Ni1/3Co1/3Mn1/3]O2 Nanowire by the Electrospinning Method (전기방사법을 이용한 Li[Ni1/3Co1/3Mn1/3]O2 나노 섬유의 합성 및 전기화학적 특성)

  • Kang, Chung-Soo;Son, Jong-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.850-854
    • /
    • 2011
  • Nano-fibers of the $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ electrode were synthesized from a metal oxide precursor using the electrospun method. The XRD patterns of all prepared powders showed a hexagonal ${\alpha}$ - $NaFeO_2$ structure (space group: R-3 m, 166). Scanning electron microscopy showed that all the synthesized samples were comprised of nanofibers with a size of 100~800 nm. Among the samples tested, the calcined $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ nanowires in oxygen heating atmosphere showed a high charge and discharge capacity of 239.22 and 172.81 $mAhg^{-1}$ at the $1^{st}$ cycle, respectively. In addition, the charge transfer resistance was also improved significantly compared to the other samples.

A Study on the Vibration Minimization Techniques for the Open Box Type Structure (열린 상자형 구조물의 진동 최소화 기법에 관한 연구)

  • 박석주;오재응;이장용;박성현
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.479-486
    • /
    • 1994
  • The Finite Element Method(FEM) generally used for the structural analysis has some defects, i.e. a great deal of computational time and huge memory capacity of computer are needed in the application to large and/or complex structures, etc. Therefore the Component Mode Synthesis method(CMS), one of sub-structure synthesis methods, was made to improve such demerits and has been developed up to now. In optimum structural modification problems, the sensitivity analysis method is useful, where the sensitivity-calculated by Fox's suggestion-is defined as the diffentials of design variables for the objective values. This paper discusses the vibration minimization techniques for the oper box type structure, in which it is assumed that an engine operates at 10-40Hz range. The results obtained are as follow; (1) The sensitivity of natural frequency could be easily obtained by sensitivity analysis method and the optimum position to insert pillars could be found by using it. (2) The rates of structural modification could be exactly obtained and the natural frequency observed could be easily shifted to the objective value. (3) The maximum amplitude around natural frequency noted could be nearly reduced to 1/25 by modification.

  • PDF

Synthesis of (Co,Mg)Al2O4 and (Ni,Mg)Al2O4 Blue Ceramic Nano Pigment by Polymerized Complex Method (착체중합법을 이용한 (Co,Mg)Al2O4 및 (Ni,Mg)Al2O4 청색 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • In this study, the properties of blue inorganic nano-pigments with a spinel structure were systematically investigated. We report the preparation of a blue ceramic nano-pigment and the Co and Ni substitutional effects on the blue color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of cobalt and nickel-based blue ceramic nano-pigments. Various compositions of $Co_xMg_{1-x}Al_2O_4$ and $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using apolymerized complex method. The obtained powder was preheated at $400^{\circ}C$ for 5 h and then calcined at $1000^{\circ}C$ for 5 h. XRD patterns of the (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ samples showed a single phase of the spinel structure in all compositions. TEM results indicated nano-sized pigments for (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ with a particle size ranging from 20 to 50 nm. The characteristics of the color tones of (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ were analyzed by CIE $L^*a^*b^*$ measurements. In addition, the thermal stability and the binding characteristics of (Co,Mg)$Al_2O_4$, (Ni,Mg)$Al_2O_4$ are discussed in terms of the TG-DSC and FT-IR results, respectively.