Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.2.187

Water-stable solvent dependent multicolored perovskites based on lead bromide  

Sharipov, Mirkomil (Department of Chemistry, Changwon National University)
Hwang, Soojin (Department of Chemistry, Changwon National University)
Kim, Won June (Department of Chemistry, Changwon National University)
Huy, Bui The (Department of Chemistry, Changwon National University)
Tawfik, Salah M. (Department of Chemistry, Changwon National University)
Lee, Yong-Ill (Department of Chemistry, Changwon National University)
Publication Information
Advances in nano research / v.13, no.2, 2022 , pp. 187-197 More about this Journal
Abstract
The synthesis of organic and hybrid organic-inorganic perovskites directly from solution improves the cost- and energy-efficiency of processing. To date, numerous research efforts have been devoted to investigating the influence of the various solvent parameters for the synthesis of lead halide perovskites, focused on the effects of different single solvents on the efficiency of the resulting perovskites. In this work, we investigated the effect of solvent blends for the first time on the structure and phase of perovskites produced via the Lewis base vapor diffusion method to develop a new synthetic approach for water-stable CsPbBr3 particles with nanometer-sized dimensions. Solvent blends prepared with DMF and water-miscible solvents with different Gutmann's donor numbers (DN) affect the Pb ions differently, resulting in a variety of lead bromide species with various colors. The use of a DMF/isopropanol solvent mixture was found to induce the formation of the Ruddlesden-Popper perovskite based on lead bromide. This perovskite undergoes a blue color shift in the solvated state owing to the separation of nanoplatelets. In contrast, the replacement of isopropanol with DMSO, which has a high DN, induces the formation of spherical CsPbBr3 perovskite nanoparticles that exhibit green emission. Finally, the integration of acetone in the solvent system leads to the formation of lead bromide complexes with a yellow-orange color and the perovskite CsPbBr3.
Keywords
Gutmann's donor number; Lewis-base vapor diffusion; multicolor lead bromide perovskite; perovskite phase structure control; water-stable;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Jung, Y.K., Calbo, J., Park, J.S., Whalley, L.D., Kim, S. and Walsh, A. (2019), "Intrinsic doping limit and defect-assisted luminescence in Cs4PbBr6", J. Mater. Chem. A, 7(35), 20254-20261. https://doi.org/10.1039/C9TA06874K.   DOI
2 Kovalenko, M.V., Protesescu, L. and Bodnarchuk, M.I. (2017), "Properties and potential optoelectronic applications of lead halide perovskite nanocrystals", Science, 358(6364), 745-750. https://doi.org/10.1126/science.aam7093.   DOI
3 De Bastiani, M., Dursun, I., Zhang, Y., Alshankiti, B.A., Miao, X.H., Yin, J., Yengel, E., Alarousu, E., Turedi, B., Almutlaq, J.M., Saidaminov, M.I., Mitra, S., Gereige, I., AlSaggaf, A., Zhu, Y., Han, Y., Roqan, I.S., Bredas, J.L., Mohammed, O.F. and Bakr, O.M. (2017), "Inside perovskites: Quantum luminescence from bulk Cs4PbBr6 single crystals", Chem. Mater., 29(17), 7108-7113. https://doi.org/10.1021/acs.chemmater.7b02415.   DOI
4 Fateev, S.A., Marchenko, E.I., Petrov, A.A., Goodilin, E.A. and Tarasov, A.B. (2020), "New acidic precursor and acetone-based solvent for fast perovskite processing via proton-exchange reaction with methylamine", Molecules, 25(8), 1856. https://doi.org/10.3390/molecules25081856.   DOI
5 Rahimnejad, S., Kovalenko, A., Fores, S.M., Aranda, C. and Guerrero, A. (2016), "Coordination chemistry dictates the structural defects in lead halide perovskites", ChemPhysChem, 17(18), 2795-2798. https://doi.org/10.1002/cphc.201600575.   DOI
6 Hamill, J.C., Schwartz, J. and Loo, Y.L. (2018), "Influence of solvent coordination on hybrid organic-inorganic perovskite formation", ACS Energy Lett., 3(1), 92-97. https://doi.org/10.1021/acsenergylett.7b01057.   DOI
7 Huang, S., Li, Z., Kong, L., Zhu, N., Shan, A. and Li, L. (2016), "Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in "waterless" toluene", J. Am. Chem. Soc., 138(18), 5749-5752. https://doi.org/10.1021/jacs.5b13101.   DOI
8 Koscher, B.A., Swabeck, J.K., Bronstein, N.D. and Alivisatos, A.P. (2017), "Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment", J. Am. Chem. Soc., 139(19), 6566-6569. https://doi.org/10.1021/jacs.7b02817.   DOI
9 Rai, R.S. and Bajpai, V. (2021), "Recent advances in ZnO nanostructures and their future perspective", Adv. Nano Res., 11(1), 7. https://doi.org/10.12989/anr.2021.11.1.037.   DOI
10 Liu, K.K., Liu, Q., Yang, D.W., Liang, Y.C., Sui, L.Z., Wei, J.Y., Xue, G.W., Zhao, W.B., Wu, X.Y., Dong, L. and Shan, C.X. (2020), "Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability", Light Sci. Appl., 9(1), 44. https://doi.org/10.1038/s41377-020-0283-2.   DOI
11 Loiudice, A., Saris, S., Oveisi, E., Alexander, D.T.L. and Buonsanti, R. (2017), "CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light and heat", Angew. Chem. Int. Ed., 56(36), 10696-10701. https://doi.org/10.1002/anie.201703703.   DOI
12 Nayak, P.K., Mahesh, S., Snaith, H.J. and Cahen, D. (2019), "Photovoltaic solar cell technologies: Analysing the state of the art", Nature Rev. Mater., 4(4), 269-285. https://doi.org/10.1038/s41578-019-0097-0.   DOI
13 Noel, N.K., Abate, A., Stranks, S.D., Parrott, E.S., Burlakov, V.M., Goriely, A. and Snaith, H.J. (2014), "Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites", ACS Nano, 8(10), 9815-9821. https://doi.org/10.1021/nn5036476.   DOI
14 Li, F., Wang, H., Kufer, D., Liang, L., Yu, W., Alarousu, E., Ma, C., Li, Y., Liu, Z., Liu, C., Wei, N., Wang, F., Chen, L., Mohammed, O.F., Fratalocchi, A., Liu, X., Konstantatos, G. and Wu, T. (2017), "Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes", Adv. Mater., 29, 1602432. https://doi.org/10.1002/adma.201602432.   DOI
15 Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K. (2008), "Restoring the density-gradient expansion for exchange in solids and surfaces", Phys. Rev. Lett., 100(13), 136406. https://doi.org/10.1103/PhysRevLett.100.136406.   DOI
16 Quan, L.N., Quintero-Bermudez, R., Voznyy, O., Walters, G., Jain, A., Fan, J.Z., Zheng, X., Yang, Z. and Sargent, E.H. (2017), "Highly emissive green perovskite nanocrystals in a solid state crystalline matrix", Adv. Mater., 29(21), 1605945. https://doi.org/10.1002/adma.201605945.   DOI
17 Riesen, N., Lockrey, M., Badek, K. and Riesen, H. (2019), "On the origins of the green luminescence in the "zero-dimensional perovskite" Cs4PbBr6: Conclusive results from cathodoluminescence imaging", Nanoscale, 11(9), 3925-3932. https://doi.org/10.1039/C8NR09255A.   DOI
18 Sadhanala, A., Deschler, F., Thomas, T.H., Dutton, S.E., Goedel, K.C., Hanusch, F.C., Lai, M.L., Steiner, U., Bein, T., Docampo, P., Cahen, D. and Friend, R.H. (2014), "Preparation of singlephase films of CH3NH3Pb(I1-xBrx)3 with sharp optical band edges", J. Phys. Chem. Lett, 5(15), 2501-2505. https://doi.org/10.1021/jz501332v.   DOI
19 Li, S.H., Chen, F.R., Zhou, Y.F. and Xu, J.G. (2009), "Pb4Br113- cluster as a fluorescent indicator for micro water content in aprotic organic solvents", Analyst, 134(3), 443-446. https://doi.org/10.1039/B817787B.   DOI
20 Li, G., Rivarola, F.W.R., Davis, N.J.L.K., Bai, S., Jellicoe, T.C., de la Pena, F., Hou, S., Ducati, C., Gao, F., Friend, R.H., Greenham, N.C. and Tan, Z.K. (2016), "Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method", Adv. Mater., 28(18), 3528-3534. https://doi.org/10.1002/adma.201600064.   DOI
21 Saidaminov, M.I., Abdelhady, A.L., Maculan, G. and Bakr, O.M. (2015), "Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth", Chem. Commun., 51(100), 17658-17661. https://doi.org/10.1039/C5CC06916E.   DOI
22 Li, Z., Hu, Q., Tan, Z., Yang, Y., Leng, M., Liu, X., Ge, C., Niu, G. and Tang, J. (2018), "Aqueous synthesis of lead halide perovskite nanocrystals with high water stability and bright photoluminescence", ACS Appl. Mater. Interf., 10(50), 43915-43922. https://doi.org/10.1021/acsami.8b16471.   DOI
23 Lin, H., Zhang, X., Cai, L., Lao, J., Qi, R., Luo, C., Chen, S., Peng, H., Huang, R. and Duan, C. (2020), "High-stability fluorescent perovskites embedded in PbBrOH triggered by imidazole derivatives in water", J. Mater. Chem. C, 8(16), 5594-5599. https://doi.org/10.1039/D0TC00939C.   DOI
24 Liu, Z., Bekenstein, Y., Ye, X., Nguyen, S.C., Swabeck, J., Zhang, D., Lee, S.T., Yang, P., Ma, W. and Alivisatos, A.P. (2017), "Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals", J. Am. Chem. Soc., 139(15), 5309-5312. https://doi.org/10.1021/jacs.7b01409.   DOI
25 Shi, S., Wang, Y., Zeng, S., Cui, Y. and Xiao, Y. (2020), "Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted PLQY", Adv. Opt. Mater., 8(12), 2000167. https://doi.org/10.1002/adom.202000167.   DOI
26 Sergeyev, D. (2021), "One-dimensional schottky nanodiode based on telescoping polyprismanes", Adv. Nano Res., 10(5), 471-479. https://doi.org/10.12989/anr.2021.10.5.471.   DOI
27 Seth, S. and Samanta, A. (2017), "Fluorescent phase-pure zerodimensional perovskite-related Cs4PbBr6 microdisks: Synthesis and single-particle imaging study", J. Phys. Chem. Lett, 8(18), 4461-4467. https://doi.org/10.1021/acs.jpclett.7b02100.   DOI
28 Shamsi, J., Urban, A.S., Imran, M., De Trizio, L. and Manna, L. (2019), "Metal halide perovskite nanocrystals: Synthesis, postsynthesis modifications and their optical properties", Chem. Rev., 119(5), 3296-3348. https://doi.org/10.1021/acs.chemrev.8b00644.   DOI
29 Stevenson, J., Sorenson, B., Subramaniam, V.H., Raiford, J., Khlyabich, P.P., Loo, Y.L. and Clancy, P. (2017), "Mayer bond order as a metric of complexation effectiveness in lead halide perovskite solutions", Chem. Mater., 29(6), 2435-2444. https://doi.org/10.1021/acs.chemmater.6b04327.   DOI
30 van Setten, M.J., Giantomassi, M., Bousquet, E., Verstraete, M.J., Hamann, D.R., Gonze, X. and Rignanese, G.M. (2018), "The pseudodojo: Training and grading a 85 element optimized normconserving pseudopotential table", Comput. Phys. Commun., 226, p. 39-54. https://doi.org/10.1016/j.cpc.2018.01.012.   DOI
31 Akkerman, Q.A., Abdelhady, A.L. and Manna, L. (2018), "Zerodimensional cesium lead halides: History, properties and challenges", J. Phys. Chem. Lett, 9(9), 2326-2337. https://doi.org/10.1021/acs.jpclett.8b00572.   DOI
32 Wu, L., Hu, H., Xu, Y., Jiang, S., Chen, M., Zhong, Q., Yang, D., Liu, Q., Zhao, Y., Sun, B., Zhang, Q. and Yin, Y. (2017), "From nonluminescent CsPbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism", Nano Lett., 17(9), 5799-5804. https://doi.org/10.1021/acs.nanolett.7b02896.   DOI
33 Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S. and Sum, T.C. (2013), "Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3", Science, 342(6156), 344-347. https://doi.org/10.1126/science.1243167.   DOI
34 Xu, J., Huang, W., Li, P., Onken, D.R., Dun, C., Guo, Y., Ucer, K.B., Lu, C., Wang, H., Geyer, S.M., Williams, R.T. and Carroll, D.L. (2017), "Imbedded nanocrystals of cspbbr3 in Cs4PbBr6: Kinetics, enhanced oscillator strength and application in light-emitting diodes", Adv. Mater., 29(43), 1703703. https://doi.org/10.1002/adma.201703703.   DOI
35 Xuan, T., Lou, S., Huang, J., Cao, L., Yang, X., Li, H. and Wang, J. (2018), "Monodisperse and brightly luminescent CsPbBr3/Cs4PbBr6 perovskite composite nanocrystals", Nanoscale, 10(21), 9840-9844. https://doi.org/10.1039/C8NR01266K.   DOI
36 Yamanouchi, J., Oku, T., Ohishi, Y., Fukaya, M., Ueoka, N., Tanaka, H. and Suzuki, A. (2018), "Fabrication and characterization of perovskite CH3NH3Pb1-xSbxI3-3xBr3x photovoltaic devices", Adv. Mater. Res., 7(1), 73-81. https://doi.org/10.12989/amr.2018.7.1.073.   DOI
37 Yin, J., Yang, H., Song, K., El-Zohry, A.M., Han, Y., Bakr, O.M., Bredas, J.L. and Mohammed, O.F. (2018), "Point defects and green emission in zero-dimensional perovskites", J. Phys. Chem. Lett, 9(18), 5490-5495. https://doi.org/10.1021/acs.jpclett.8b02477.   DOI
38 Ying, G., Jana, A., Osokin, V., Farrow, T., Taylor, R.A. and Park, Y. (2020), "Highly efficient photoluminescence and lasing from hydroxide coated fully inorganic perovskite micro/nano-rods", Adv. Opt. Mater., 8(23), 2001235. https://doi.org/10.1002/adom.202001235.   DOI
39 Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M. (2009), "Quantum espresso: A modular and open-source software project for quantum simulations of materials", J. Phys. Condens. Matter, 21(39), 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
40 Akkerman, Q.A., D'Innocenzo, V., Accornero, S., Scarpellini, A., Petrozza, A., Prato, M. and Manna, L. (2015), "Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions", J. Am. Chem. Soc., 137(32), 10276-10281. https://doi.org/10.1021/jacs.5b05602.   DOI
41 Chin, S.H., Choi, J.W., Hu, Z., Mardegan, L., Sessolo, M. and Bolink, H.J. (2020), "Tunable luminescent lead bromide complexes", J. Mater. Chem. C, 8(45), 15996-16000. https://doi.org/10.1039/D0TC04057F.   DOI
42 Du, X., Wu, G., Cheng, J., Dang, H., Ma, K., Zhang, Y.W., Tan, P.F. and Chen, S. (2017), "High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes", RSC Adv., 7(17), 10391-10396. https://doi.org/10.1039/C6RA27665B.   DOI
43 Dutta, S.K. and Perkovic, M.W. (2002), "Lead as its own luminescent sensor", Inorg. Chem., 41(26), 6938-6940. https://doi.org/10.1021/ic0260724.   DOI
44 Hu, H., Wu, L., Tan, Y., Zhong, Q., Chen, M., Qiu, Y., Yang, D., Sun, B., Zhang, Q. and Yin, Y. (2018), "Interfacial synthesis of highly stable CsPbX3/oxide janus nanoparticles", J. Am. Chem. Soc., 140(1), 406-412. https://doi.org/10.1021/jacs.7b11003.   DOI
45 Yoon, S.J., Draguta, S., Manser, J.S., Sharia, O., Schneider, W.F., Kuno, M. and Kamat, P.V. (2016), "Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation", ACS Energy Lett., 1(1), 290-296. https://doi.org/10.1021/acsenergylett.6b00158.   DOI
46 Zhong, Q., Cao, M., Hu, H., Yang, D., Chen, M., Li, P., Wu, L. and Zhang, Q. (2018), "One-pot synthesis of highly stable CsPbBr3 @SiO2 core-shell nanoparticles", ACS Nano, 12(8), 8579-8587. https://doi.org/10.1021/acsnano.8b04209.   DOI
47 Zou, Y., Xu, H., Li, S., Song, T., Kuai, L., Bai, S., Gao, F. and Sun, B. (2019), "Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films", ACS Photonics, 6(7), 1728-1735. https://doi.org/10.1021/acsphotonics.9b00435.   DOI
48 Akkerman, Q.A., Park, S., Radicchi, E., Nunzi, F., Mosconi, E., De Angelis, F., Brescia, R., Rastogi, P., Prato, M. and Manna, L. (2017), "Nearly monodisperse insulator CsPbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions and their transformation into CsPbX3 nanocrystals", Nano Lett., 17(3), 1924-1930. https://doi.org/10.1021/acs.nanolett.6b05262.   DOI
49 Giannozzi, P. andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.Y., Kokalj, A., Kucukbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.V., Otero-de-la-Roza, A., Paulatto, L., Ponce, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. and Baroni, S. (2017), "Advanced capabilities for materials modelling with quantum espresso", J. Phys. Condens. Matter, 29(46), 465901. https://doi.org/10.1088/1361-648x/aa8f79.
50 Han, J., Sharipov, M., Hwang, S., Lee, Y., Huy, B.T. and Lee, Y.I. (2022), "Water-stable perovskite-loaded nanogels containing antioxidant property for highly sensitive and selective detection of roxithromycin in animal-derived food products", Sci. Rep., 12(1), 3147. https://doi.org/10.1038/s41598-022-07030-9.   DOI
51 Jana, A. and Kim, K.S. (2018), "Water-stable, fluorescent organic-inorganic hybrid and fully inorganic perovskites", ACS Energy Lett., 3(9), 2120-2126. https://doi.org/10.1021/acsenergylett.8b01394.   DOI