• Title/Summary/Keyword: Sub spatial

Search Result 794, Processing Time 0.039 seconds

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

Method for Restoring the Spatial Resolution of KOMPSAT-3A MIR Image (KOMPSAT-3A 중적외선 영상의 공간해상도 복원 기법)

  • Oh, Kwan-Young;Lee, Kwang-Jae;Jung, Hyung-Sup;Park, Sung-Hwan;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1391-1401
    • /
    • 2019
  • The KOMPSAT-3A is a high-resolution optical satellite launched in 2015 by Korea Aerospace Research Institute (KARI). KOMPSAT-3A provides Panchromatic (PAN-0.55 m), Multispectral (MS-2.2 m), and Mid-wavelength infrared (MIROR-5.5 m) image. However, due to security or military problems, MIROR image with 5.5m spatial resolution are provided down sampled at 33 m spatial resolution (MIRrd). In this study, we propose spatial sharpening method to improve the spatial resolution of MIRrd image (33 m) using virtual High Frequency (HF) image and optimal fusion factor. Using MS image and MIRrd image, we generated virtual high resolution (5.5 m) MIRORfus image and then compared them to actual high-resolution MIROR image. The test results show that the proposed method merges the spatial resolution of MS image and the spectral information of MIRrd image efficiently.

Efficient Processing of All-farthest-neighbors Queries in Spatial Network Databases

  • Cho, Hyung-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1466-1480
    • /
    • 2019
  • This paper addresses the efficient processing of all-farthest-neighbors (AFN) queries in spatial network databases. Given a set of data points P={p1,p2,…,p|p|} in a spatial network, where the distance between two data points p and s, denoted by dist (p,s), is the length of the shortest path between them, an AFN query is defined as follows: find the farthest neighbor ω(p)∈P of each data point p such that dist(p,ω(p)) ≥ dist(p,s) for all s∈P. In this paper, we propose a shared execution algorithm called FAST (for All-Farthest-neighbors Search in spatial neTworks). Extensive experiments on real-world roadmaps confirm the efficiency and scalability of the FAST algorithm, while demonstrating a speedup of up to two orders of magnitude over a conventional solution.

A Study on Spatial Differences in PM2.5 Concentrations According to Synoptic Meteorological Distribution (종관 기상 분포에 따른 PM2.5 농도의 공간적 차이에 관한 연구)

  • Da Eun Chae;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.999-1012
    • /
    • 2022
  • To investigate the reason for the spatial difference in PM2.5 (Particulate Matter, < 2.5 ㎛) concentration despite a similar synoptic pattern, a synoptic analysis was performed. The data used for this study were the daily average PM2.5 concentration and meteorological data observed from 2016 to 2020 in Busan and Seoul metropolitan areas. Synoptic pressure patterns associated with high PM2.5 concentration episodes (greater than 35 ㎍/m3) were analyzed using K-means cluster analysis, based on the 900 hPa geopotential height of NCEP (National Centers for Environmental Prediction) FNL (Final analysis) data. The analysis identified three sub-groups related to high concentrations occurring only in Busan and Seoul metropolitan areas. Although the synoptic patterns of high PM2.5 concentration episodes that occur independently in Busan and Seoul metropolitan areas were similar, there was a difference in the intensity of pressure gradient and its direction, which tends to be an important factor determining the movement time of pollutants. The spatial difference in PM2.5 concentration in the Korean Peninsula is due to the difference and direction of the atmospheric pressure gradient that develops from southwest to northeast direction.

Fault Detection System Using Spatial Index Structure (공간자료구조를 활용한 단층인식 시스템)

  • Bang, Kap-San
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1205-1208
    • /
    • 2005
  • By adding user interface to the usual router, an improved functional router is implemented in this paper. Due to the massive amount of spatial data processing, spatial information processing area has been rapidly grown up in recent years based on powerful computer hardware and software development. Spatial index structures are the core engine of geographic information system(GIS). Analyzing and processing of spatial information using GIS has a lot of applications and the number application will be increased in the future. However, study on the under ground is in its infancy due to invisible characteristic of this information. This paper proposes the sub-surface fault detection system using the sub-surface layer information gathered from elastic wave. Detection of sub-surface fault provides very important information to the safety of above and sub-surface man made structures. Development of sub-surface fault detection system will serve as a pre-processing system assisting the interpretation of the geologist.

  • PDF

Delta-form-based method of solving high order spatial discretization schemes for neutron transport

  • Zhou, Xiafeng;Zhong, Changming;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2084-2094
    • /
    • 2021
  • Delta-form-based methods for solving high order spatial discretization schemes are introduced into the reactor SN transport equation. Due to the nature of the delta-form, the final numerical accuracy only depends on the residuals on the right side of the discrete equations and have nothing to do with the parts on the left side. Therefore, various high order spatial discretization methods can be easily adopted for only the transport term on the right side of the discrete equations. Then the simplest step or other robust schemes can be adopted to discretize the increment on the left hand side to ensure the good iterative convergence. The delta-form framework makes the sweeping and iterative strategies of various high order spatial discretization methods be completely the same with those of the traditional SN codes, only by adding the residuals into the source terms. In this paper, the flux limiter method and weighted essentially non-oscillatory scheme are used for the verification purpose to only show the advantages of the introduction of delta-form-based solving methods and other high order spatial discretization methods can be also easily extended to solve the SN transport equations. Numerical solutions indicate the correctness and effectiveness of delta-form-based solving method.

Teaching Spatial Sense of Solid Figures in Elementary School Mathematics (입체도형의 공간 감각 지도에 관한 논의)

  • Chong, Yeong Ok
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.1
    • /
    • pp.161-194
    • /
    • 2017
  • The aim of this study is to look into sub-factors of spatial sense that can be contained in spatial sense of solid figure of mathematics curriculum and offer suggestions to improve teaching spatial sense of solid figures in the future. In order to attain these purposes, this study examined the meaning and sub-factors of spatial sense and the relations between spatial sense of solid figure and sub-factors of spatial sense through a theoretical consideration regarding various studies on spatial sense. Based on such examination, this study compared and analyzed textbooks used in South Korea, Finland and the Netherlands with respect to contents of mathematics curriculum and textbooks in grades, sub-factors of spatial sense, and realistic contexts for spatial sense of solid figure. In the light of such theoretical consideration and analytical results, this study provided suggestions for improving teaching spatial sense of solid figures in elementary schools in Korea as follows: extending contents regarding spatial sense of solid figures in mathematics curriculum and considering continuity between grades in textbooks, emphasizing spatial orientation as well as spatial visualization, underlining not only construction with blocks but also mental activities in mental rotation and mental transformation, comparing strength and weakness of diverse plane representations of three dimensional objects, and utilizing various realistic situations and objects in space.

  • PDF

Multiscale Spatial Position Coding under Locality Constraint for Action Recognition

  • Yang, Jiang-feng;Ma, Zheng;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1851-1863
    • /
    • 2015
  • – In the paper, to handle the problem of traditional bag-of-features model ignoring the spatial relationship of local features in human action recognition, we proposed a Multiscale Spatial Position Coding under Locality Constraint method. Specifically, to describe this spatial relationship, we proposed a mixed feature combining motion feature and multi-spatial-scale configuration. To utilize temporal information between features, sub spatial-temporal-volumes are built. Next, the pooled features of sub-STVs are obtained via max-pooling method. In classification stage, the Locality-Constrained Group Sparse Representation is adopted to utilize the intrinsic group information of the sub-STV features. The experimental results on the KTH, Weizmann, and UCF sports datasets show that our action recognition system outperforms the classical local ST feature-based recognition systems published recently.

Assessments of the GEMS NO2 Products Using Ground-Based Pandora and In-Situ Instruments over Busan, South Korea

  • Serin Kim;Ukkyo Jeong;Hanlim Lee;Yeonjin Jung;Jae Hwan Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Busan is the 6th largest port city in the world, where nitrogen dioxide (NO2) emissions from transportation and port industries are significant. This study aims to assess the NO2 products of the Geostationary Environment Monitoring Spectrometer (GEMS) over Busan using ground-based instruments (i.e., surface in-situ network and Pandora). The GEMS vertical column densities of NO2 showed reasonable consistency in the spatiotemporal variations, comparable to the previous studies. The GEMS data showed a consistent seasonal trend of NO2 with the Korea Ministry of Environment network and Pandora in 2022, which is higher in winter and lower in summer. These agreements prove the capability of the GEMS data to monitor the air quality in Busan. The correlation coefficient and the mean bias error between the GEMS and Pandora NO2 over Busan in 2022 were 0.53 and 0.023 DU, respectively. The GEMS NO2 data were also positively correlated with the ground-based in-situ network with a correlation coefficient of 0.42. However, due to the significant spatiotemporal variabilities of the NO2, the GEMS footprint size can hardly resolve small-scale variabilities such as the emissions from the road and point sources. In addition, relative biases of the GEMS NO2 retrievals to the Pandora data showed seasonal variabilities, which is attributable to the air mass factor estimation of the GEMS. Further studies with more measurement locations for longer periods of data can better contribute to assessing the GEMS NO2 data. Reliable GEMS data can further help us understand the Asian air quality with the diurnal variabilities.

A Comparative Study on Mathematics Curriculums and Textbooks of Spatial Orientation in Elementary School Mathematics (초등학교 수학에서 공간 방향에 대한 교육과정과 교과서 비교)

  • Chong, Yeong Ok
    • School Mathematics
    • /
    • v.19 no.4
    • /
    • pp.663-690
    • /
    • 2017
  • The aim of this study is to look into the meaning and sub-factors of spatial orientation, compare and analyze mathematics curriculums and textbooks of several countries with respect to spatial orientation and offer suggestions to improve teaching spatial orientation in elementary school mathematics in Korea. In order to attain these purposes, this study examined the meaning and sub-factors of spatial orientation through the theoretical consideration regarding various studies on spatial sense. Based on such examination, this study compared and analyzed mathematics curriculums and textbooks used in South Korea, Singapore, Japan, China, Hong Kong, Finland, United States of America, and Germany with respect to contents of mathematics curriculum and textbooks in grades, sub-factors of spatial orientation, and contexts for spatial orientation. In the light of such theoretical consideration and analytical results, this study provided suggestions for improving teaching spatial orientation in elementary schools in Korea as follows: extending content of spatial orientation in mathematics curriculum, emphasizing spatial orientation across the several grades, especially in the upper grades, providing opportunities to learn the sub-factors of location, direction, coordinates, route, and distance variously, and utilizing various familiar and realistic contexts in the world around students.