Browse > Article
http://dx.doi.org/10.4218/etrij.2021-0127

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection  

Kim, Sangchoon (Department of Electronics Engineering, Dong-A University)
Publication Information
ETRI Journal / v.44, no.1, 2022 , pp. 117-124 More about this Journal
Abstract
In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.
Keywords
differential spatial modulation (DSM); MIMO; precoding-aided spatial modulation (PSM); transmit antenna subset selection; zero-forcing (ZF);
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Asaad, A. M. Rabiei, and R. R. Muller, Massive MIMO with antenna selection: Fundamental limits and applications, IEEE Trans. Wirel. Commun. 17 (2018), no. 12, 8502-8516.   DOI
2 IEEE Standard 802.11n-2009, Enhancements for higher throughput, 2009, Available from: http://www.ieee802.org
3 P. Wen et al., Efficient receive antenna selection for pre-coding aided spatial modulation, IEEE Commun. Lett. 22 (2018), no. 2, 416-419.   DOI
4 S. Kim, Diversity order of precoding-aided spatial modulation using receive antenna selection, Electron. Lett. 56 (2020), no. 5, 260-262.   DOI
5 S. Kim, Transmit antenna selection for precoding-aided spatial modulation, IEEE Access 8 (2020), 40723-40731.   DOI
6 E. Bjornson et al., Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits, IEEE Trans. Inf. Theory. 60 (2014), no. 11, 7112-7139.   DOI
7 P.-H. Lin and S.-H. Tsai, Performance analysis and algorithm designs for transmit antenna selection in linearly precoded multiuser MIMO systems, IEEE Trans. Veh. Techol. 61 (2012), no. 4, 1698-1708.   DOI
8 J. H. Winters, J. Salz, and R. D. Gitlin, The impact of antenna diversity on the capacity of wireless communication systems, IEEE Trans. Commun. 42 (1994), no. 234, 1740-1751.   DOI
9 M. K. Simon and M.-S. Alouini, Digital Communication Over Fading Channels, 1st ed., John Wiley & Sons, Hoboken, NJ, USA, 2000.
10 M. Zhang et al., Pre-coding aided differential spatial modulation, in Proc. IEEE Glob. Commun. Conf. (San Diego, CA, USA), Dec. 2015, pp. 1-6.
11 M. Zhang et al., A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation, IEEE Trans. Wirel. Commun. 15 (2016), no. 9, 6356-6370.   DOI
12 H. Liu, R. C. Qiu, and Z. Tian, Error performance of pulse-based ultra-wideband MIMO systems over indoor wireless channels, IEEE Trans. Wirel. Commun. 4 (2005), no. 6, 2939-2944.   DOI
13 R. Mesleh, S. S. Ikki, and H. M. Aggoune, Quadrature spatial modulation, IEEE Trans. Veh. Techol. 64 (2015), no. 6, 2738-2742.   DOI
14 P. Yang et al., Transmit precoded spatial modulation: Maximizing the minimum Euclidean distance versus minimizing the bit error ratio, IEEE Trans. Wirel. Commun. 15 (2016), no. 3, 2054-2068.   DOI
15 R. Zhang, L.-L. Yang, and L. Hanzo, Generalized pre-coding aided spatial modulation, IEEE Trans. Wirel. Commun. 12 (2013), no. 11, 5434-5443.   DOI
16 J. Li et al., Generalized pre-coding aided quadrature spatial modulation, IEEE Trans. Veh. Techol. 66 (2017), no. 2, 1881-1886.   DOI
17 J. Li et al., Generalized quadrature spatial modulation and its application to vehicular networks with NOMA, IEEE Trans. Intell. Transp. Syst. 22 (2020), no. 7, 4030-4039.
18 L.-L. Yang, Transmitter preprocessing aided spatial modulation for multiple-input multiple-output systems, in Proc. IEEE Veh. Technol. Conf. (Budapest, Hungary), May 2011, pp. 1-5.
19 Y. Bian et al., Differential spatial modulation, IEEE Trans. Veh. Techol. 64 (2015), no. 7, 3262-3268.
20 S. Kim, Efficient transmit antenna selection for receive spatial modulation-based massive MIMO, IEEE Access 8 (2020), 40723-40731.   DOI
21 B. Gade et al., A fair comparison between spatial modulation and antenna selection in massive MIMO systems, in Proc. Int. ITG Workshop Smart Antennas (WSA 2019), (Vienna, Austria), Apr. 2019, pp. 1-6.
22 E. Basar, Index modulation techniques for 5G wireless networks, IEEE Commun. Mag. 54 (2016), no. 7, 168-175.   DOI
23 T. Mao et al., Novel index modulation techniques: A survey, IEEE Commun. Surv. Tutor. 21 (2019), no. 1, 315-348.   DOI
24 M. Renzo et al., Spatial modulation for generalized MIMO: Challenges, opportunities and implementation, Proc. IEEE 102 (2014), no. 1, 56-103.   DOI
25 R. Y. Mesleh and A. Alhassi, Space Modulation Techniques, 1st ed., John Wiley & Sons, Hoboken, NJ, USA, 2018.
26 R. Zhang, L.-L. Yang, and L. Hanzo, Error probability and capacity analysis of generalized pre-coding aided spatial modulation, IEEE Trans. Wirel. Commun. 15 (2016), no. 10, 6731-6741.   DOI
27 M. Wen et al., Performance analysis of differential spatial modulation with two transmit antennas, IEEE Commun. Lett. 18 (2014), no. 3, 475-478.   DOI
28 Q. Li et al., Spatial modulation-aided cooperative NOMA: Performance analysis and comparative study, IEEE J. Sel. Topics Signal Process. 13 (2019), no. 3, 715-728.   DOI
29 T. Mao, Q. Wang, and Z. Wang, Spatial modulation for Terahertz communication systems with hardware impairments, IEEE Trans. Veh. Technol. 69 (2020), no. 4, 4553-4557.   DOI
30 J. Zheng, Fast receive antenna subset selection for pre-coding aided spatial modulation, IEEE Wirel. Commun. Lett. 4 (2015), no. 3, 317-320.   DOI
31 M. Wen et al., Multiple-mode orthogonal frequency division multiplexing with index modulation, IEEE Trans. Commun. 65 (2017), no. 9, 3892-3906.   DOI
32 M. Wen et al., A survey on spatial modulation in emerging wireless, IEEE J. Sel. Areas Commun. 37 (2019), no. 9, 1949-1972.   DOI
33 R. Mesleh, S. Althunibat, and A. Younis, Differential quadrature spatial modulation, IEEE Trans. Commun. 65 (2017), no. 9, 3810-3817.   DOI
34 A. F. Molisch and M. Z. Win, MIMO systems with antenna selection-an overview, IEEE Microw. Mag. 5 (2004), no. 1, 46-56.