DOI QR코드

DOI QR Code

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon (Department of Electronics Engineering, Dong-A University)
  • Received : 2021.04.13
  • Accepted : 2021.07.16
  • Published : 2022.02.01

Abstract

In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

Keywords

Acknowledgement

This study was supported by research funds from Dong-A University.

References

  1. E. Basar, Index modulation techniques for 5G wireless networks, IEEE Commun. Mag. 54 (2016), no. 7, 168-175. https://doi.org/10.1109/MCOM.2016.7509396
  2. T. Mao et al., Novel index modulation techniques: A survey, IEEE Commun. Surv. Tutor. 21 (2019), no. 1, 315-348. https://doi.org/10.1109/COMST.2018.2858567
  3. M. Wen et al., Multiple-mode orthogonal frequency division multiplexing with index modulation, IEEE Trans. Commun. 65 (2017), no. 9, 3892-3906. https://doi.org/10.1109/TCOMM.2017.2710312
  4. M. Renzo et al., Spatial modulation for generalized MIMO: Challenges, opportunities and implementation, Proc. IEEE 102 (2014), no. 1, 56-103. https://doi.org/10.1109/JPROC.2013.2287851
  5. R. Y. Mesleh and A. Alhassi, Space Modulation Techniques, 1st ed., John Wiley & Sons, Hoboken, NJ, USA, 2018.
  6. M. Wen et al., A survey on spatial modulation in emerging wireless, IEEE J. Sel. Areas Commun. 37 (2019), no. 9, 1949-1972. https://doi.org/10.1109/jsac.2019.2929453
  7. Q. Li et al., Spatial modulation-aided cooperative NOMA: Performance analysis and comparative study, IEEE J. Sel. Topics Signal Process. 13 (2019), no. 3, 715-728. https://doi.org/10.1109/jstsp.2019.2898099
  8. T. Mao, Q. Wang, and Z. Wang, Spatial modulation for Terahertz communication systems with hardware impairments, IEEE Trans. Veh. Technol. 69 (2020), no. 4, 4553-4557. https://doi.org/10.1109/tvt.2020.2975629
  9. R. Mesleh, S. S. Ikki, and H. M. Aggoune, Quadrature spatial modulation, IEEE Trans. Veh. Techol. 64 (2015), no. 6, 2738-2742. https://doi.org/10.1109/TVT.2014.2344036
  10. J. Li et al., Generalized quadrature spatial modulation and its application to vehicular networks with NOMA, IEEE Trans. Intell. Transp. Syst. 22 (2020), no. 7, 4030-4039.
  11. L.-L. Yang, Transmitter preprocessing aided spatial modulation for multiple-input multiple-output systems, in Proc. IEEE Veh. Technol. Conf. (Budapest, Hungary), May 2011, pp. 1-5.
  12. P. Yang et al., Transmit precoded spatial modulation: Maximizing the minimum Euclidean distance versus minimizing the bit error ratio, IEEE Trans. Wirel. Commun. 15 (2016), no. 3, 2054-2068. https://doi.org/10.1109/TWC.2015.2497692
  13. R. Zhang, L.-L. Yang, and L. Hanzo, Generalized pre-coding aided spatial modulation, IEEE Trans. Wirel. Commun. 12 (2013), no. 11, 5434-5443. https://doi.org/10.1109/TWC.2013.100213.130848
  14. R. Zhang, L.-L. Yang, and L. Hanzo, Error probability and capacity analysis of generalized pre-coding aided spatial modulation, IEEE Trans. Wirel. Commun. 15 (2016), no. 10, 6731-6741. https://doi.org/10.1109/TWC.2016.2588468
  15. J. Li et al., Generalized pre-coding aided quadrature spatial modulation, IEEE Trans. Veh. Techol. 66 (2017), no. 2, 1881-1886. https://doi.org/10.1109/TVT.2016.2565618
  16. Y. Bian et al., Differential spatial modulation, IEEE Trans. Veh. Techol. 64 (2015), no. 7, 3262-3268.
  17. M. Wen et al., Performance analysis of differential spatial modulation with two transmit antennas, IEEE Commun. Lett. 18 (2014), no. 3, 475-478. https://doi.org/10.1109/LCOMM.2014.012014.132524
  18. M. Zhang et al., Pre-coding aided differential spatial modulation, in Proc. IEEE Glob. Commun. Conf. (San Diego, CA, USA), Dec. 2015, pp. 1-6.
  19. M. Zhang et al., A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation, IEEE Trans. Wirel. Commun. 15 (2016), no. 9, 6356-6370. https://doi.org/10.1109/TWC.2016.2583423
  20. R. Mesleh, S. Althunibat, and A. Younis, Differential quadrature spatial modulation, IEEE Trans. Commun. 65 (2017), no. 9, 3810-3817. https://doi.org/10.1109/TCOMM.2017.2712720
  21. A. F. Molisch and M. Z. Win, MIMO systems with antenna selection-an overview, IEEE Microw. Mag. 5 (2004), no. 1, 46-56.
  22. S. Asaad, A. M. Rabiei, and R. R. Muller, Massive MIMO with antenna selection: Fundamental limits and applications, IEEE Trans. Wirel. Commun. 17 (2018), no. 12, 8502-8516. https://doi.org/10.1109/twc.2018.2877992
  23. B. Gade et al., A fair comparison between spatial modulation and antenna selection in massive MIMO systems, in Proc. Int. ITG Workshop Smart Antennas (WSA 2019), (Vienna, Austria), Apr. 2019, pp. 1-6.
  24. IEEE Standard 802.11n-2009, Enhancements for higher throughput, 2009, Available from: http://www.ieee802.org
  25. J. Zheng, Fast receive antenna subset selection for pre-coding aided spatial modulation, IEEE Wirel. Commun. Lett. 4 (2015), no. 3, 317-320. https://doi.org/10.1109/LWC.2015.2413396
  26. P. Wen et al., Efficient receive antenna selection for pre-coding aided spatial modulation, IEEE Commun. Lett. 22 (2018), no. 2, 416-419. https://doi.org/10.1109/lcomm.2017.2732401
  27. S. Kim, Diversity order of precoding-aided spatial modulation using receive antenna selection, Electron. Lett. 56 (2020), no. 5, 260-262. https://doi.org/10.1049/el.2019.3224
  28. S. Kim, Transmit antenna selection for precoding-aided spatial modulation, IEEE Access 8 (2020), 40723-40731. https://doi.org/10.1109/access.2020.2976732
  29. E. Bjornson et al., Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits, IEEE Trans. Inf. Theory. 60 (2014), no. 11, 7112-7139. https://doi.org/10.1109/TIT.2014.2354403
  30. M. K. Simon and M.-S. Alouini, Digital Communication Over Fading Channels, 1st ed., John Wiley & Sons, Hoboken, NJ, USA, 2000.
  31. P.-H. Lin and S.-H. Tsai, Performance analysis and algorithm designs for transmit antenna selection in linearly precoded multiuser MIMO systems, IEEE Trans. Veh. Techol. 61 (2012), no. 4, 1698-1708. https://doi.org/10.1109/TVT.2012.2190435
  32. H. Liu, R. C. Qiu, and Z. Tian, Error performance of pulse-based ultra-wideband MIMO systems over indoor wireless channels, IEEE Trans. Wirel. Commun. 4 (2005), no. 6, 2939-2944. https://doi.org/10.1109/TWC.2005.858350
  33. J. H. Winters, J. Salz, and R. D. Gitlin, The impact of antenna diversity on the capacity of wireless communication systems, IEEE Trans. Commun. 42 (1994), no. 234, 1740-1751. https://doi.org/10.1109/TCOMM.1994.582882
  34. S. Kim, Efficient transmit antenna selection for receive spatial modulation-based massive MIMO, IEEE Access 8 (2020), 40723-40731. https://doi.org/10.1109/access.2020.2976732