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1. INTRODUCTION   

Computing the nearest, farthest, or some inter-

mediate neighbors is a fundamental problem in

computational geometry and location-based serv-

ices (LBS), and the results of these computations

can be applied to many applications. Given a set

of data points {⋯} in a spatial network,

the farthest neighbor of a data point p in P is de-

fined as max{∈}, where  is the
length of the shortest path between two data points

p and s. The problem of computing the farthest

neighbor of each data point in P is referred to as

the all-farthest-neighbors (AFN) search problem,

which is the logical opposite of the all-nearest-

neighbors (ANN) search problem [1, 2].

Nearest neighbor search has been studied ex-

tensively, because of its importance and over-

whelming impact in LBS [1-4]. However, little at-

tention has been paid to farthest neighbor search,

even though it has real-life applications in a large

number of fields, including marketing, facility loca-

tion, clustering, and recommendation systems. Let

us consider some real-life scenarios in which far-

thest neighbor search is valuable. For example, if

a user wants to purchase a facility that has a suffi-

cient service range, such as a transceiver or tele-

scope, the user can use the distance to the farthest

neighbor to determine which facility to buy. In ad-

dition, in contrast to the nearest neighbor, the far-

thest neighbor can be of particular interest to a

user just because of its remoteness. A farthest

neighbor search can be used, for example, to de-

termine the quiet places farthest from a noisy

factory. Some tourists may be interested in the

greatest distance between two cities in a country

that can be traversed on land.

Fig. 1 shows an example of an AFN query in

a spatial network, where data points p1 through p5
denote places such as service stations. In this ex-
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ample, the AFN query retrieves the farthest neigh-

bor, denoted by , of each data point p in P. We

can compute the query result  {〈〉∈}
{〈〉〈〉〈〉〈〉〈〉}. Unfortu-
nately, few studies have been carried out on the

AFN search problem [5, 6]. Bae et al. [6] proposed

an efficient solution to AFN search in the L1 plane

with the Manhattan metric, in the presence of

highways and obstacles. However, this approach

cannot be extended to AFN search over spatial

networks, because of inconsistencies in problem

requirements between the L1 plane and a spatial

network. Spatial queries based on farthest neigh-

bor search have gained significant attention in re-

cent years in the form of farthest neighbor queries

[7], reverse farthest neighbor queries [8, 9], and

aggregate farthest neighbor queries [10, 11]. How-

ever, existing solutions cannot be readily applied

to AFN queries in spatial networks because of dif-

ferences in the problem specification and distance

metrics.

The simplest search algorithm for AFN queries

in spatial networks involves computing the network

distance between every ordered pair 〈〉∈×,
which corresponds to the all-pairs-shortest-path

problem [12], and then spending additional  

time to choose the farthest ordered pairs among

all pairs in ×. This simple solution is too com-

putationally expensive to be of any practical use,

particularly for large datasets, because of the very

large number of distance computations required

between data points in spatial networks of even

moderate size. Therefore, we propose a new algo-

rithm called FAST, for All-Farthest-neighbors

Search in spatial neTworks. Our proposed solution

is to cluster adjacent data points into a group and

then optimize shared computation for the group, to

rapidly filter candidates by computing the max-

imum distance between two groups. Although the

shared computation of spatial queries has received

much attention [13-15], no shared computation

strategy has been applied to AFN queries in spatial

networks to date. In this study, we optimize the

shared execution strategy to process AFN queries

in spatial networks. The FAST algorithm is easy

to implement, facilitating its integration with popu-

lar network distance algorithms, such as transit

node routing (TNR) [16] and G-tree [17], for spa-

tial networks. We summarize the main contribu-

tions of this study as follows.

∙We propose an efficient algorithm, called FAST,

that exploits the shared execution of groups to

minimize the number of network distance

computations.

∙We present a mathematical formula to compute

the maximum distance between two groups. We

also present effective pruning techniques based

on the maximum distance between the two

groups.

∙We conduct experiments under several different

sets of conditions to demonstrate the efficiency

and scalability of the FAST algorithm and dem-

onstrate speedups of up to two orders of magni-

tude over a conventional solution.

The remainder of this paper is organized as

follows. In Section 2, we review related research.

In Section 3, we provide essential background

knowledge. In Section 4, we present a method for

converting adjacent data points into a group, and

detail how to compute the maximum distance be-

tween two groups. In Section 5, we present the

FAST algorithm for performing AFN queries in

Fig. 1. Example of an AFN query in a road network 

where {}.
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spatial networks using shared execution of the

network distance computations. In Section 6, we

report a comprehensive experimental study com-

paring the FAST algorithm with a conventional

solution under different circumstances. Finally, we

discuss our conclusions in Section 7.

2. RELATED WORK

Many studies have been performed on the proc-

essing of sophisticated spatial queries based on

farthest neighbor search. Curtin et al. [7] presented

an approximate farthest neighbor search algorithm

that selects a set of candidate data points using

data distributed in Euclidean space. They also de-

veloped an information-theoretic entropy measure

to investigate the difficulty of the farthest neighbor

search problem. Lu et al. [18] formulated the far-

thest dominated location query, which retrieves a

location such that the distance to its nearest domi-

nating object is maximized, for spatial decision

support applications. Gao et al. [10] and Wang et

al. [11] studied aggregate k-farthest neighbor

queries in Euclidean space and spatial networks,

respectively. Given a set of data points P and a

set of query data points Q, an aggregate k-farthest

neighbor query returns the k data points in P that

have the largest aggregate distances to all query

data points in Q. Reverse farthest neighbors quer-

ies have also been studied, both in Euclidean space

[8, 9] and in spatial networks [19, 20]. Yao et al.

[9] first studied reverse farthest neighbor query

problem in Euclidean space. They proposed pro-

gressive farthest cell and convex hull farthest cell

algorithms to support reverse farthest neighbors

queries using the R-tree [21]. Wang et al. [8] pre-

sented a solution to support reverse k-farthest

neighbors queries in Euclidean space for arbitrary

values of k. Tran et al. [19] studied reverse farthest

neighbor queries in spatial networks using network

Voronoi diagrams and precomputed network dis-

tances. Xu et al. [20] presented efficient algorithms

based on landmarks and hierarchical partitioning

to process monochromatic reverse farthest neigh-

bors queries, as well as bichromatic reverse far-

thest neighbors queries, in spatial networks. How-

ever, existing solutions in Euclidean space cannot

be readily applied to our situation because it is very

difficult to exploit R-trees and convex hulls in spa-

tial networks.

The AFN search problem has been recently ex-

amined from a theoretical point of view [6, 22]. Bae

et al. [6] proposed an efficient algorithm for AFN

search in the L1 plane in the presence of highways

and obstacles. This approach cannot be extended

to AFN search in spatial networks, because of in-

consistent problem requirements. Daescu et al. [22]

presented solutions to farthest-point problems in

the plane and showed how the solutions can be

used to efficiently solve other complex problems,

such as simplifying polygonal paths or determining

the data point farthest from a query segment.

Katoh and Iwano [23] addressed the problems of

enumerating the k closest or farthest bichromatic

pairs of red and blue data points in the Euclidean

space. However, large-scale spatial networks need

practical and efficient algorithms for the evaluation

of AFN queries, which limits the application of

these theoretical approaches [6, 22] in our situation.

To process a large number of queries in a data-

base system, the shared execution strategy has at-

tracted considerable attention, because of its low

processing cost [13-15]. The key idea of shared

query execution is to cluster queries that share

some common execution path into a group, and

then execute the group as a single query in the

system. These shared execution methods have

been found to be effective in many applications in-

volving high load conditions. In this study, we ex-

ploit a shared execution strategy to increase the

efficiency of AFN queries in spatial networks. Our

proposed solution differs from existing studies in

several ways. First, it represents the first attempt

to evaluate AFN queries efficiently in spatial
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networks. Second, it employs a shared execution

strategy to rapidly filter candidates while process-

ing AFN queries. Finally, it can be implemented

easily using popular network distance algorithms

[16, 17] in spatial networks, a highly desirable

property in practice. A brief survey and empirical

comparison of some of the most popular network

distance algorithms are presented in [24]. The

techniques presented in [1, 2, 17, 25] for nearest

neighbor search cannot be directly applied to far-

thest neighbor search, because the nearest neigh-

bor search and farthest neighbor search have op-

posite goals.

3. PRELIMINARIES

We first define the principal terms related to far-

thest neighbor and AFN queries, and summarize

the notation used in this paper.

Definition 1. (Farthest neighbor): The farthest

neighbor of a data point p from a set of data points

P is defined as  such that ∈ and
 ≥  for ∀∈. Ties are broken
arbitrarily.

Definition 2. (AFN query): Given a set of data

points P , an AFN query retrieves a set of ordered

pairs, each consisting of a data point p in P and

its farthest neighbor . The AFN query result

 is formally defined as  {〈〉∈}.
Definition 3. (Spatial network): We represent

a spatial network as an undirected weighted graph

 , where V is the set of vertices, E is

the set of edges, and the weight  → asso-

ciates each edge with a positive real number repre-

senting the network distance or travel time. Each

data point p is located on an edge  in the spatial

network.

Definition 4. (Classification of vertices): We di-

vide vertices into three categories based on their

degree. (1) If the degree of a vertex is greater than

or equal to three, the vertex is referred to as an

intersection vertex. (2) If the degree is two, the

vertex is an intermediate vertex. (3) If the degree

is one, the vertex is a terminal vertex.

Definition 5. (Vertex sequence and segment):

A vertex sequence  ⋯ denotes a path be-

tween two vertices vl and vm, such that each of

vl and vm is either an intersection vertex or a termi-

nal vertex, and the other vertices in the path,

 ⋯   , are intermediate vertices. The length

of a vertex sequence is the total weight of the

edges in the vertex sequence. A part of a vertex

sequence is referred to as a segment. By definition,

a vertex sequence is also a segment. Table 1 pres-

ents the symbols and notation used throughout the

Table 1. Symbols and their meanings

Symbol Definition

 Length of the shortest path connecting two data points p and s in the spatial network

len
Length of the segment connecting two data points p and s that are located in a vertex
sequence

  ⋯
Vertex sequence where neither vl nor vm has a degree of two and the other vertices,
 ⋯  , have a degree of two

   ⋯ Data segment in which data points   ⋯ are in a vertex sequence

 Farthest neighbor of a data point p in a set of data points P such that for all ∈
maxdist(
 )

Maximum distance between two data segments  and
 , i.e., max

{∈∈ },

mindist(
 )

Minimum distance between two data segments  and
 , i.e.,

min{∈∈ },
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paper. To simplify the presentation, we use  to

denote   ⋯ and use  to denote 

when P denotes the set of all data points.

4. PROCESSING AFN QUERIES IN SPATIAL 

NETWORK DATABASES

4.1 Grouping adjacent data points in a vertex 

sequence

Fig. 2 presents an example of an AFN query in

a spatial network, which will be used as the exam-

ple throughout this section. As shown in Figure

2(a), given a set of data points {⋯}, an

AFN query retrieves the farthest neighbor of each

data point p in P . Fig. 2(b) shows the sample

grouping of adjacent data points in a vertex

sequence. As shown in Fig. 2(b), four data points

p1, p2, p5, and p6 in a vertex sequence are

grouped into a segment and two data

points p3 and p4 in a vertex sequence are

grouped into another segment  . Naturally, the

data point p7 in vertex sequence  is not grouped

because there is no other data point in the vertex

sequence  . Therefore, a set of data points 

{⋯} can be transformed into a set of seg-

ments {  }.

4.2 Computation of the distance between two 

segments 

In this section, we describe the computation of

the minimum and maximum distances between

two data segments,  and  , which are de-

noted as mindist( ) and maxdist( ),

respectively. Clearly, mindist( ) and maxd-

ist( ) are formally defined as mindist

( )＝min{∈∈ } and maxd-
i s t (  ) ＝ m a x { ∈∈ } ,
respectively.

Corollary 1. mindist( ) is a lower bound

(maxdist( ) is an upper bound) on the dis-

tance between two data points ∈ and ∈ .
Therefore, mindist( )≤ ≤maxdist

( ) for ∀∈ and ∀∈ . ■
We describe how to compute mindist( )

and maxdist( ). If there exists an overlap

between  and (i.e., ∩≠∅), the min-

imum distance between  and  is mindist

( )＝0; otherwise, the minimum distance

between  and  is mindist( )＝min

{  }. Unlike the

computation of mindist( ), it is not intuitive

to compute maxdist( ). We first describe

how to compute the maximum distance between

a segment  and a data point s in  . For this,

we investigate the distance between two data

points p and s where ∈ and ∈ .
In Fig. 3, let us assume that the data point pi

corresponds to the origin of the XY coordinate

system. The X-axis and Y-axis then represent len

  and , respectively, where ∈ . For
convenience, data point p is represented by a rec-

tangle, whereas data point s is represented by a

(a) (b)

Fig. 2. Grouping adjacent data points in a vertex sequence. (a) {⋯} (b) 
{ 
 }.
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triangle. If there is a path from data point p to data

point s via pi (i.e., →→), the distance between

p and s is computed as  len
 , as shown in Fig. 3(a). Similarly,

if there is a path from p to s via pj (i.e., →→),

then  is computed as  len
, as shown in Fig. 3(b). If the data

point s is located in  , then  is computed

as  len , as shown in Fig. 3(c).

Because  is the length of the shortest path

among multiple paths between p and s, it is com-

puted as follows:

Given a segment  and a data point s, let

  
 be the farthest data point of s to a set

of data points in  , which means that there exists

a data point s* in  such that maxdist()

 . We can then easily locate s* in  us-

(a) (b) (c)

Fig. 3. Determination of the distance from p to s where ∈ . (a)  len  (b)  len
 (c)  len.

(a)

(b) (c) (d)

Fig. 4. Evaluation of maxdist(  ), maxdist(  ), and maxdist(  ). (a) Data segment  and three data 

points s1, s2, and s3 (b) maxdist(  )＝8 (c) maxdist( )＝9 (d) maxdist(  )＝9. 
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ing the linear equation maxdist() 
.

In Fig. 4, let us compute the farthest data point

s* of each data point ∈{} such that
∈ and maxdist( ) . Because
   ,    , len   , and

    len , we have maxdist

    and    , as illustrated in Fig. 4

(b). Similarly, because    ,    ,

len   , and     len ,

we have maxdist     and    , as

illustrated in Fig. 4(c). Finally, because

   ,    , and len   , the

maximum distance between  and  is eval-

uated as maxdist     and the farthest data

point of  is marked as 
 in Fig. 4(d). The dash-

ed/dotted lines in Fig. 4 indicate the lengths of re-

dundant paths that are not the shortest.

Fig. 5 illustrates the process of computing maxd-

ist( ). This process operates in two steps,

which correspond to Fig. 5(a) and 5(b). In the first

step, we find the farthest data point 
 (respectively,


) of  (respectively, ) such that   



(respectively,   
), i.e., maxdist   


  (respectively, maxdist   

 ),

as shown in Fig. 5(a). In the second step, we com-

pute maxdist(
) and maxdist(

), as

shown in Fig. 5(b), where data point 
 (respec-

tively, 
) indicates the farthest data point of 



(respectively, 
) such that 

  
 (respec-

tively, 
  

)－that is, maxdist
  



 －as shown in Fig. 5(b). Returning to the

example, let us compute the maximum distances

of the three segments ,  , and  in Fig.

2(b). Specifically, we evaluate maxdist(  ),

maxdist( ), maxdist( ), maxdist( 

 ), maxdist(  ), and maxdist() in

this order.

Fig. 6 illustrates how to compute maxdist

(  ). As shown in Fig. 6(a), the maximum

distance between and  is evaluated as

maxdist( )＝9 because we have  

 ,    , and len   . Therefore, the

farthest data point of  among is marked

as 
   ; that is,    . As shown in

Fig. 6(b), the maximum distance between

and  is evaluated as maxdist( )＝14 be-

cause we have    ,    , and

len   . Therefore, the farthest data point of

 among  is marked as 
 ; that is,


  

 . As shown in Fig. 6(c), the max-

imum distance between  and  is evaluated as

maxdist( )＝14 because we have    ,

   , and len   . Therefore, the

farthest data point of  among  is marked as


 ; that is,   

 . As shown in Fig. 6(d),

the maximum distance between  and 
 is eval-

uated as maxdist( 
)＝14 because we have

(a) (b)

Fig. 5. Evaluation of maxdist(
 )＝max{maxdist(

 ), maxdist(
)}. (a) Finding 

  
 and 


  

 (b) Evaluation of maxdist(
 ) and maxdist(

 ).
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
   , 

   , and len   .

Therefore, the farthest data point of 
 among 

becomes  ; that is, 
   . Consequently,

the maximum distance between and  is

evaluated as maxdist(  )＝max{
 


 }＝max{14,14}＝14. Clearly, the minimum

distance between and  is evaluated as

mindist(  )＝min

{    }＝

min{3,9,10,12}＝3. Table 2 summarizes the mini-

mum and maximum distances between the seg-

ments in Fig. 2(b).

4.3 Sorting segments in decreasing order of their 

maximum distance

Fig. 7 illustrates sorting all segments in  for

each segment  , for the example { 

 }. Specifically, the three segments in  are

sorted and plotted in decreasing order of the max-

imum distance to each segment in  . If segments

with the same maximum distance are found, they

are repeatedly sorted in decreasing order of their

minimum distance. As shown in Fig. 7(a),  ,  ,

and are sorted in this order for be-

cause we have maxdist(  )＝14, maxdist

( )＝9, and maxdist(  )＝6.

(a) (b) (c) (d)

Fig. 6. maxdist( 
 )＝14. (a) maxdist(  )＝9 and 

   (b) maxdist( )＝14 and 


  

 (c) maxdist(  )＝14 and 
  

 (d) maxdist( 
 )＝14 and 

   .

Table 2. Minimum and maximum distances between pairs of segments in 


 maxdist(

 ) mindist(
 )






maxdist( 
 )＝6

maxdist( 
 )＝14

maxdist( )＝9

mindist( 
 )＝0

mindist( 
 )＝3

mindist( )＝5






maxdist( 
 )＝14

maxdist( 
 )＝7

maxdist( )＝10

mindist( 
 )＝3

mindist( 
 )＝0

mindist( )＝4






maxdist(
 )＝9

maxdist(
 )＝10

maxdist()＝0

mindist(
 )＝5

mindist(
 )＝4

mindist()＝0
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As shown in Fig. 7(b), ,  , and  are

sorted in this order for  because we have

maxdist(  )＝14, maxdist( )＝10, and

maxdist(  )＝7. Finally, as shown in Fig.

7(c),  , , and  are sorted in this order

for  because we have maxdist( )＝10,

maxdist( )＝9, and maxdist()＝0.

5. ALL-FARTHEST-NEIGHBORS SEARCH 

ALGORITHM OVER SPATIAL NETWORKS

Algorithm 1 describes the FAST algorithm for

AFN search over spatial networks. The result set

 is initialized to the empty set (line 1). In the

first step, adjacent data points   ⋯ in a

vertex sequence are grouped into a data segment
 and a set P of data points is converted to a

set  of segments, which is explained in Section

4.1 (lines 2-3). The AFN search is performed for

each segment in  to find the farthest neighbor

of each data point in the segment (line 6). The

result  of the AFN search for  is added

to the query result, where  

{〈〉∈} (line 7). Finally, the query result
 is reported after the AFN search for all

segments in  is performed (line 8).

Algorithm 2 describes the AFN search algorithm

for finding the farthest neighbor of each data point

in  . This algorithm sequentially traverses each

of the sorted segments in  . Note that all segments

in  are sorted in decreasing order of their max-

imum distance to  . First, the result set 

is initialized to the empty set (line 1). The pruning

distance of each data point  in  is initialized

to    (line 2), where  in-

dicates the distance from  to its most probable

farthest neighbor. Similarly, the pruning distance

of  is the minimum pruning distance

of all data points in  ; that is,  min

{∈}. Based on Corollary 1, we pres-

 Algorithm 1. FAST (P)
 Input: P: set of data points
 Output: : set of ordered pairs of each data point ∈ and its farthest neighbor, i.e.,  {〈〉∈}.
 1 ←∅ // the result set  is initialized to the empty set.
 2 // adjacent data points in each vertex sequence are grouped into a segment, as explained in Section 4.1.
 3 ←group_points (P) // data points   ⋯ in a vertex sequence are grouped into a data segment  .
 4 // for each data segment, it retrieves the FN of each data point in the segment, which is detailed in Algorithm 2.
 5 for each segment ∈  do

 6 ←AFN_search //  {〈〉∈}.

 7 ←∪ // the AFN search result for   is added to .

 8 return  //  is returned after the AFN search for each data segment ∈  is executed.

(a) (b) (c)

Fig. 7. Sorting all segments in decreasing order of their maximum distance to ∈{ 
 }. (a) Sorting 

all segments for   (b) Sorting all segments for   (c) Sorting all segments for  .
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ent the following two corollaries to filter the re-

maining unexplored segments, because these seg-

ments can be safely neglected in the AFN search.

Corollary 2. If maxdist( ),

the remaining unexplored segments can be safely

ignored for the AFN search of the segment  ,

because all segments in  are sorted in decreasing

order of their maximum distance to  . ■

Corollary 3. If maxdist( ), the

distance computation between data point  and

each data point in  can be safely ignored for

the AFN search of , because no data point in 

can be the farthest neighbor of . ■

All segments are explored sequentially to find

the farthest neighbor of each data point  in  .

Whenever a data segment  is investigated, the

pruning distance of  is updated to the minimum

pruning distance of all data points in  (line 9).

According to Corollary 2, if maxdist( )

, the AFN search algorithm termi-

nates by returning the result set ; otherwise,

 is explored to find the farthest neighbor of

each data point in  . According to Corollary 3,

if maxdist( ), no data point in
can be the farthest neighbor of , and so the dis-

tance computation between  and all data points

in  can be safely ignored for ; otherwise, for

each data point s in  , we compute . If

 , the farthest neighbor of  and

its pruning distance are updated to s and ,
respectively (lines 17-18). Accordingly, the prun-

ing distance of  is also updated to  

. Finally, the result set  is returned

if maxdist( ) (lines 10-11) or

 Algorithm 2. AFN_search

 Input:  : data segment,  : set of data segments

 Output: : set of ordered pairs of each data point in   and its farthest neighbor

 1 ←∅ // the result set  is initialized to the empty set.

 2 ← for ∀∈ // the pruning distance of each data point p in   is initialized to 0.

 3 // the maximum and minimum distances from   to each segment in   are computed as explained in Section 4.2.

 4 for each data segment ∈  do

 5 compute maxdist( ) and maxdist( )

 6 // all the segments in   are sorted in decreasing order of their maximum distance to   as explained in Section 4.3.

 7 ←sort_by_dec_order ( ) //   contains the sorted segments for the data segment  .

 8 for each data segment ∈  do

 9 ←min{∈} // the pruning distance of   is updated.

 10 if maxdist( ) then // note that all the segments are sorted in decreasing order.

 11 return  //  is returned if maxdist( ).

 12 else // it means that maxdist( )≥.

 13 for each data point ∈  do

 14 if maxdist( )≥ then //  is updated to .

 15 for each data point ∈  do
 16 if   then
 17 ← // the pruning distance of p is updated to .

 18 ←
∪{ 〈〉} −

{〈〉}
// an updated ordered pair 〈〉 is added to 

 19  return  //  is returned if all segments in   have been explored



1476 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 22, NO. 12, DECEMBER 2019

if all segments in  have been explored (line 19).

6. PERFORMANCE STUDY

In this section, we report the results of an em-

pirical analysis of our proposed solution. We pres-

ent our experimental settings in Section 6.1, fol-

lowed by our experimental results in Section 6.2.

6.1 Experimental settings

In the experiments, we use three real-world

roadmaps [26], which are described in Table 3.

These real-world roadmaps have different sizes

and each is a part of the US road network. Specifi-

cally, the first roadmap includes major roads (such

as city streets) in San Francisco (SF), California

and corresponds to a data universe of approx-

imately × km2. The second roadmap includes

major roads (such as highways) in North America

(NA) and corresponds to a data universe of ap-

proximately × km2. The third roadmap in-

cludes major roads (e.g., city streets) in San

Joaquin (SJ), California and corresponds to a data

universe of approximately × km2.

The experimental parameter settings are given

in Table 4. For convenience, each dimension of the

data universe is normalized independently to unit

length . The data points have either centroid

or uniform distributions. The centroid-based data-

set is generated to resemble the real-world data.

First, five centroids are selected randomly. The da-

ta points around each centroid follow a normal dis-

tribution, where the mean is set to the centroid and

the standard deviation is set to 1% of the side

length of the data universe.

In the performance study, we evaluated the per-

formance of FAST using the query processing

time. To the best of our knowledge, there is no

competitive solution to efficiently evaluate AFN

queries in spatial network databases, so we con-

sidered a baseline method as a benchmark to verify

the performance of the FAST method. The baseline

method finds the farthest neighbor of each data

point in P by computing the network distance be-

tween every ordered pair 〈〉∈× and then
spending additional time   to identify the

farthest ordered pairs among all pairs in ×. Both

methods were implemented in C++ (Microsoft

Visual Studio 2017), using common subroutines for

similar tasks. We conducted experiments on a

desktop computer running Windows 10 with a 4.2

GHz processor and 32 GB of memory. We believe

that indexing structures of all techniques should

be resident in memory to ensure responsive query

processing; this is assumed in many recent studies

[3, 24] and is crucial to commercial LBS as well

as online map services. We determined the average

values for each method based on repetitions of the

experiments. Finally, we employed the TNR meth-

od [16] to rapidly compute the network distance

between two data points. According to the per-

formance comparison in [24], the TNR method

Table 3. Real-world roadmaps

Name Description Vertices Edges Vertex sequences

SF
NA
SJ

City streets in San Francisco, California
Highways in North America
City streets in San Joaquin, California

174,956
175,813
18,263

223,001
179,179
23,874

192,276
12,416
20,040

Table 4. Experimental parameter settings

Parameter Range

Number of data points ( )
Distribution of data points
Roadmap

500, 1000, 2000, 3000, 5000
(C)entroid, (U)niform
SF, NA, SJ
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achieves competitive performance regardless of the

benchmark where it is tested.

6.2 Experimental results

Fig. 8 shows a comparison of the query process-

ing times of the FAST and baseline methods for

the evaluation of AFN queries in the SF roadmap.

To evaluate the performance of the FAST method,

we examined the number of network distance

computations and data segments generated from

adjacent data points for each experimental setup.

The two values in parentheses in Fig. 8, 9, and 10

indicate the number of network distance computa-

tions performed by the FAST method and the

number of data segments generated from adjacent

data points. Similarly, we have also represented the

number of network distance computations for the

baseline method and the number of data points to

Fig. 8, 9, and 10 for comparison. As shown in Fig.

8(a), the query processing time of the FAST meth-

od for a centroid distribution of data points is less

than that of the baseline algorithm by up to 22.8

times for   . The difference in performance

between the FAST and baseline algorithms tends

to increase with because the FAST method ex-

ploits the shared execution of AFN searches during

the query evaluation. The shared execution of the

FAST method aims to minimize the number of

network distance computations. To do this, the

FAST method groups the adjacent data points into

a joint data segment and exploits shared computa-

tion for this data segment to rapidly filter candi-

dates by computing the maximum distance be-

tween two data segments. Therefore, as the num-

ber of data segments generated from the adjacent

data points decreases, the difference between the

FAST and baseline methods in terms of perform-

ance increases. The query processing time of the

(28653, 94)

(169970, 264)

(407826, 412) (1396043, 456)

(3383403, 1181)
(124750, 500)

(499500, 1000)
(1999000, 2000)

(4498500, 3000)

(12497500, 5000)

(124750, 500)

(499500, 1000)

(1999000, 2000)

(4498500, 3000)

(12497500, 5000)

(130695, 499)

(519343, 999)

(2152608, 1997)

(5075493, 2988)

(14940474, 4975)

(a) (b)

Fig. 8. Comparison of query processing time for SF roadmap. (a) Centroid distribution (b) Uniform distribution.

(58679, 142) (104434, 163)
(555531, 152) (926651, 154)

(729348, 277)

(124750, 500)

(499500, 1000)

(1999000, 2000)
(4498500, 3000)

(12497500, 5000)

(174375, 467)

(721432, 863)

(3039834, 1616)
(6422407, 2203)

(15701885, 3261)(499500, 1000)

(1999000, 2000)

(12497500, 5000)

(124750, 500)

(4498500, 3000)

(a) (b)

Fig. 9. Comparison of query processing time for NA roadmap. (a) Centroid distribution (b) Uniform distribution.
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baseline method increases steeply with  because

the distance computation, to determine the farthest

neighbor of each data point in P , has   time

complexity. As shown in Fig. 8(b), the two meth-

ods have similar performance for uniformly dis-

tributed data points in the SF roadmap. This is ex-

pected because the data points are widely scat-

tered, which obstructs the shared execution proc-

essing of the FAST method. Despite the uniform

distribution of the data points, the query processing

time of the FAST method is up to 2.2 times less

than that of the baseline method in all cases.

Fig. 9 shows a comparison of the query process-

ing times of the two methods for AFN queries in

the NA roadmap. As shown in Fig. 9(a), the FAST

method requires a shorter query processing time

than the baseline method by up to 268 times for

  . The FAST method requires the smallest

query processing time for   , indicating that

the shared execution of the network distance com-

putations is significantly affected by the dis-

tribution of data points. The query processing time

of the baseline method increases rapidly with 

because it requires a large number,  , of net-

work distance computations to determine the far-

thest neighbor of each data point in P . However,

as shown in Fig. 9(b), the two methods show sim-

ilar performance when the data points follow a uni-

form distribution in the NA roadmap. The reason

is that the data points are widely scattered, which

obstructs shared execution processing of the

FAST method. Nevertheless, the FAST method

clearly outperforms the baseline method by up to

5.7 times in all cases for the uniform distribution.

Fig. 10 shows a comparison of the query proc-

essing times of the two methods for evaluating

AFN queries in the SJ roadmap. As shown in Fig.

10(a), the FAST method has shorter query proc-

essing times than the baseline method by up to 101

times for   . The query processing time of

the FAST method is less sensitive to  than the

baseline method for a centroid distribution of data

points. Specifically, the FAST method has a longer

query execution time for    than for

   whereas the query processing time of the

baseline method increases with . This is because

the FAST method exploits the shared execution of

the network distance computations and the base-

line method requires a large number,  , of

distance computations to determine the farthest

neighbor of each data point in P . However, as

shown in Fig. 10(b), the difference in performance

between the FAST and baseline algorithms de-

creases for a uniform distribution of data points

compared to a centroid distribution. This is be-

cause the data points are widely scattered, which

obstructs shared execution processing of the FAST

method. The FAST method clearly outperforms

the baseline method by up to 3.1 times in all cases

of the uniform distribution of the data points.

(27757, 98)
(80041, 136)

(143499, 195)

(508544, 370)

(995371, 484)(124750, 500) (499500, 1000)

(1999000, 2000)

(4498500, 3000)

(12497500, 5000)

(145400, 495)

(654067, 974)

(3039482, 1918)
(7337170, 2814)

(22770174, 4589)

(12497500, 5000)

(4498500, 3000)

(1999000, 2000)

(499500, 1000)

(124750, 500)

(a) (b)

Fig. 10. Comparison of query processing time for SJ roadmap. (a) Centroid distribution (b) Uniform distribution.
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7. CONCLUSIONS

In this research, we studied algorithms for the

efficient processing of AFN queries in spatial net-

work databases. The processing of AFN queries

in spatial networks cannot be achieved by the

straightforward application of previous approaches

(e.g., [5, 6]) in Euclidean space because of the com-

plexity of network distance computations, as op-

posed to Euclidean distance computations. To

overcome this difficulty, we propose the FAST

method, which employs grouping of adjacent data

points and shared execution to avoid redundant

network distance computations. We compared the

performance of the FAST and baseline methods

using several real-life roadmaps in a wide range

of problem settings. The empirical results con-

firmed that the FAST algorithm is efficient and

scalable with the number of data points and is sig-

nificantly superior to the baseline algorithm, par-

ticularly when data points are not distributed uni-

formly over the spatial network.
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