• Title/Summary/Keyword: Sturm-Liouville equation

Search Result 14, Processing Time 0.023 seconds

THREE SOLUTIONS FOR A SECOND-ORDER STURM-LIOUVILLE EQUATION WITH IMPULSIVE EFFECTS

  • HAGHSHENAS, HADI;AFROUZI, GHASEM A.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.407-414
    • /
    • 2020
  • In this article, a second-order Sturm-Liouville problem with impulsive effects and involving the one-dimensional p-Laplacian is considered. The existence of at least three weak solutions via variational methods and critical point theory is obtained.

DETERMINATION OF THE FLEXURAL RIGIDITY OF A BEAM FROM LIMITED BOUNDARY MEASUREMENTS

  • LESNIC DANIEL
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.17-34
    • /
    • 2006
  • Inverse coefficient identification problems associated with the fourth-order Sturm-Liouville operator in the steady state Euler-Bernoulli beam equation are investigated. Unlike previous studies in which spectral data are used as additional information, in this paper only boundary information is used, hence non-destructive tests can be employed in practical applications.

ON THE INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH A NONLINEAR SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

  • Mamedov, Khanlar R.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1243-1254
    • /
    • 2009
  • The inverse scattering problem is investigated for some second order differential equation with a nonlinear spectral parameter in the boundary condition on the half line [0, $\infty$). In the present paper the coefficient of spectral parameter is not a pure imaginary number and the boundary value problem is not selfadjoint. We define the scattering data of the problem, derive the main integral equation and show that the potential is uniquely recovered.

A NOTE ON THE EXISTENCE OF SOLUTIONS OF HIGHER-ORDER DISCRETE NONLINEAR STURM-LIOUVILLE TYPE BOUNDARY VALUE PROBLEMS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.205-215
    • /
    • 2009
  • Sufficient conditions for the existence of at least one solution of the boundary value problems for higher order nonlinear difference equations $\{{{{{\Delta^n}x(i-1)=f(i,x(i),{\Delta}x(i),{\cdots},\Delta^{n-2}x(i)),i{\in}[1,T+1],\atop%20{\Delta^m}x(0)=0,m{\in}[0,n-3],}\atop%20\Delta^{n-2}x(0)=\phi(\Delta^{n-1}(0)),}\atop%20\Delta^{n-1}x(T+1)=-\psi(\Delta^{n-2}x(T+1))}\$. are established.

  • PDF

SOME SPECTRAL AND SCATTERING PROPERTIES OF GENERALIZED EIGENPARAMETER DEPENDENT DISCRETE TRANSMISSION STURM-LIOUVILLE EQUATION

  • Guher Gulcehre Ozbey;Guler Basak Oznur;Yelda Aygar ;Turhan Koprubasi
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.457-470
    • /
    • 2023
  • In this study, we set a boundary value problem (BVP) consisting of a discrete Sturm-Liouville equation with transmission condition and boundary conditions depending on generalized eigenvalue parameter. Discussing the Jost and scattering solutions of this BVP, we present scattering function and find some properties of this function. Furthermore, we obtain resolvent operator, continuous and discrete spectrum of this problem and we give an valuable asymptotic equation to get the properties of eigenvalues. Finally, we give an example to compare our results with other studies.

SOLUTIONS OF STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.231-243
    • /
    • 2007
  • The existence of solutions of a class of two-point boundary value problems for higher order differential equations is studied. Sufficient conditions for the existence of at least one solution are established. It is of interest that the nonlinearity f in the equation depends on all lower derivatives, and the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bound of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

Reassessment of the Mild Slope Equations (완경사 파랑식들의 재평가)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.521-532
    • /
    • 2007
  • In the derivation of mild slope equation, a Galerkin method is used to rigorously form the Sturm-Liouville problem of depth dependent functions. By use of the canonical transformation to the dependent variable of the equation a reduced Helmholtz equation is obtained which exclusively consists of terms proportional to wave number, bottom slope and bottom curvature. Through numerical studies the behavior of terms is shown to play an important role in wave transformations over variable depth and it is proved that their relative magnitudes limit applicability of the mild slope equation(MSE) against the modified mild slope equation(MMSE).