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Abstract. We determine interval of two eigenvalues for which there ex-
istence and nonexistence of positive solution for a system of even-order

dynamic equation on time scales subject to Sturm-Liouville boundary con-
ditions.
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1. Introduction

The theory of time scales was introduced and developed by Hilger [9] to unify
both continuous and discrete analysis. Time scales theory presents us with the
tools necessary to understand and explain the mathematical structure underpin-
ning the theories of discrete and continuous dynamic systems and allows us to
connect them. The theory is widely applied to various situations like epidemic
models, the stock market and mathematical modeling of physical and biologi-
cal systems. Certain economically important phenomena contain processes that
feature elements of both the continuous and discrete. The book on the subject
of time scales by Bohner and Peterson [4, 5], summarizes and organizes much of
the time scale calculus.

In recent years, the existence and nonexistence of positive solutions of the
higher order boundary value problems (BVPs) on time scales have been studied
extensively due to their striking applications to almost all area of science, en-
gineering and technology, Anderson [2, 3], Chyan and Henderson [6], Erbe and
Peterson [7], Kameswararao and Nageswararao [14], Sun [16].
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We are concerned with determining values of λ and µ for which there exist
and nonexist of positive solutions for the system of dynamic equations,

(−1)nu(∆∇)n(t) + λp(t)f(u(t), v(t)) = 0, t ∈ [a, b],

(−1)nv(∆∇)n(t) + µq(t)g(u(t), v(t)) = 0, t ∈ [a, b],
(1.1)

with the Sturm-Liouville boundary conditions,

αi+1u
(∆∇)i(a)− βi+1u

(∆∇)i∆(a) = 0, γi+1u
(∆∇)i(b) + δi+1u

(∆∇)i∆(b) = 0,

αi+1v
(∆∇)i(a)− βi+1v

(∆∇)i∆(a) = 0, γi+1v
(∆∇)i(b) + δi+1v

(∆∇)i∆(b) = 0,
(1.2)

for 0 ≤ i ≤ n − 1, n ≥ 1 with a ∈ Tkn , b ∈ Tkn

for a time scale T and
σn(a) < ρn(b). Our interest in this paper is to investigate the existence and
nonexistence of eigenvalues λ and µ that yields positive and no positive solutions
to the associated boundary value problems, (1.1)-(1.2).
We assume that:

(A1) αj , βj , γj , δj ≥ 0 and dj = γjβj + αjδj + αjγj(b− a) > 0;
(A2) f, g ∈ C([0,∞)× [0,∞), [0,∞));
(A3) p, q ∈ C([a, b], [0,∞)), and each does not vanish identically on any subin-

terval;
(A4) All of

f0 := limu+v→0+
f(u,v)
u+v , g0 := limu+v→0+

g(u,v)
u+v ,

f∞ := limu+v→∞
f(u,v)
u+v , g∞ := limu+v→∞

g(u,v)
u+v

exist as positive real numbers.

The rest of this paper is organized as follows. In Section 2, we present some
preliminaries and lemmas that will be used to prove our main results. In Sec-
tion 3, we discuss the existence of a positive solution of the system (1.1)-(1.2).
The intervals in which the parameters λ and µ can guarantee the existence of
a solution are obtained. In Section 4, we will consider the conditions of the
nonexistence of a positive solution.

2. Preliminary results

In this section, we state some lemmas that will be used to prove our results.
Shortly we will be concerned with a completely continuous operator whose kernel
is the Green’s function for the related homogeneous problem (−1)nu(∆∇)n(t) =
0, t ∈ [a, b] satisfying boundary conditions (1.2). For 1 ≤ j ≤ n, let Gj(t, s) be
the Green’s function for the boundary value problems,

−u∆∇(t) = 0, t ∈ [a, b] (2.1)

αju(a)− βju
∆(a) = 0, γju(b) + δju

∆(b) = 0. (2.2)

First, we need few results on the related second order homogeneous boundary
value problem (2.1)-(2.2).
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Lemma 2.1. For 1 ≤ j ≤ n, let dj = γjβj+αjδj+αjγj(b−a). The homogeneous
boundary value problem (2.1)-(2.2) has only the trivial solution if and only if
dj > 0.

Lemma 2.2. For 1 ≤ j ≤ n, the Green’s function Gj(t, s) for the homogeneous
boundary value problem (2.1)-(2.2), is given by

Gj(t, s) =


1

dj
{αj(t− a) + βj}{γj(b− s) + δj} : a ≤ t ≤ s ≤ b

1

dj
{αj(s− a) + βj}{γj(b− t) + δj} : a ≤ s ≤ t ≤ b.

(2.3)

Lemma 2.3. Assume that condition (A1) is satisfied. Then, the Green’s func-
tion Gj(t, s) satisfies the following inequality

gj(t)Gj(s, s) ≤ Gj(t, s) ≤ Gj(s, s), for any s, t ∈ [a, b], (2.4)

where

gj(t) = min

{
αj(t− a) + βj

αj(b− a) + βj
,

γj(b− t) + δj
γj(b− a) + δj

}
< 1, (2.5)

for 1 ≤ j ≤ n.

Proof. It is straightforward to see that

Gj(t, s)

Gj(s, s)
=


αj(t− a) + βj

αj(s− a) + βj
: a ≤ t ≤ s ≤ b

γj(b− t) + δj
γj(b− s) + δj

: a ≤ s ≤ t ≤ b

this expression yields both inequalities in (2.4) for gj as in (2.5). �

Lemma 2.4. Assume that the condition (A1) is satisfied, and Gj(t, s) as in
(2.3). Let us define H1(t, s) = G1(t, s), and recursively define

Hj(t, s) =

∫ b

a

Hj−1(t, r)Gj(r, s)∇r, (2.6)

for 2 ≤ j ≤ n. Then Hn(t, s) is the Green’s function for the corresponding
homogeneous problem (1.1)-(1.2).

Let ξ and ω are chosen from T such that a < ξ < ω < b and also

mj = min
t∈[ξ,ω]

gj(t) (2.7)

for gj as in (2.5).
Let τ ∈ [ξ, ω] be defined by∫ ω

ξ

Gj(τ, s)p(s)∇s = max
t∈[ξ,ω]

∫ ω

ξ

Gj(t, s)p(s)∇s
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Lemma 2.5. Assume that the condition (A1) holds. If we define

K =
n−1∏
j=1

Kj , L =
n−1∏
j=1

mjLj ,

then the Green’s function Hn(t, s) in Lemma 2.4 satisfies

0 ≤ Hn(t, s) ≤ KGn(s, s), (t, s) ∈ [a, b]× [a, b] (2.8)

and
Hn(t, s) ≥ mnLGn(s, s), (t, s) ∈ [ξ, ω]× [a, b] (2.9)

where mn is given in (2.7),

Kj =

∫ b

a

Gj(s, s)∇s > 0 and Lj =

∫ ω

ξ

Gj(s, s)∇s > 0, 1 ≤ j ≤ n.

Proof. We using mathematical induction on n it is straightforward. �

By using Green’s function, our problem (1.1)-(1.2) can be written equivalently
as the following nonlinear system of integral equations

u(t) = λ

∫ b

a

Hn(t, s)p(s)f(u(s), v(s))∇s, a ≤ t ≤ b,

v(t) = µ

∫ b

a

Hn(t, s)q(s)g(u(s), v(s))∇s, a ≤ t ≤ b.

We consider the Banach space B = C[a, b]× C[a, b] with the norm

∥(u, v)∥ = ∥u∥+ ∥v∥ = max
t∈[a,b]

|u(t)|+ max
t∈[a,b]

|v(t)|.

We define the cone P ⊂ B by

P =
{
(u, v) : B : u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ [a, b] and

min
t∈ [ξ,ω]

(u(t) + v(t)) ≥ mnL

K
∥ (u, v) ∥

}
.

For λ, µ > 0, we introduce the operators Qλ, Qµ : C[a, b] × C[a, b] → C[a, b]
by

Qλ(u, v)(t) = λ

∫ b

a

Hn(t, s)p(s)f(u(s), v(s))∇s, a ≤ t ≤ b,

Qµ(u, v)(t) = µ

∫ b

a

Hn(t, s)q(s)g(u(s), v(s))∇s, a ≤ t ≤ b,

and an operator Q : C[a, b]× C[a, b] → C[a, b]× C[a, b] as

Q(u, v) =
(
Qλ(u, v), Qµ(u, v)

)
, (u, v) ∈ C[a, b]× C[a, b]. (2.10)

Then seeking solution to our BVP (1.1)-(1.2) is equivalent to looking for fixed
points of the equation Q(u, v) = (u, v) in the Banach space B.

Lemma 2.6. Q : P → P is completely continuous.



Existence and Nonexistence of Positive Solutions 535

Proof. By using standard arguments, we can easily show that, under assump-
tions (A1) − (A2), the operator Q is completely continuous, we need only to
prove Q(P) ⊆ P. Choose some (u, v) ∈ P. Then by Lemma 2.5 we have

min
t∈[ξ,ω]

Qλ(u, v)(t) ≥
mnL

K
∥ Qλ(u, v) ∥, min

t∈[ξ,ω]
Qµ(u, v)(t) ≥

mnL

K
∥ Qµ(u, v) ∥

and thus

min
t∈[ξ,ω]

[
∥ Qλ(u, v) ∥ + ∥ Qµ(u, v) ∥

]
≥ min

t∈[ξ,ω]
Qλ(u, v)(t) + min

t∈[ξ,ω]
Qµ(u, v)(t)

≥ mnL

K
∥ Qλ(u, v) ∥ +

mnL

K
∥ Qµ(u, v) ∥

=
mnL

K

[
∥ Qλ(u, v) ∥ + ∥ Qµ(u, v) ∥

]
which implies that Q(P) ⊆ P for every (u, v) ∈ P.

As Qλ and Qµ are integral operators, it is not difficult to see that using
standard arguments we may conclude that both Qλ and Qµ are completely
continuous, hence Q is completely continuous operator. �

3. Existence results

In this section, we apply Krasnosel’skii fixed point theorem [13] to obtain the
solutions in a cone (that is, positive solution) of (1.1)-(1.2).

Theorem 3.1 (Krasnosel’skii). Let B be a Banach space, and let P ⊂ B be a
cone in B. Assume that Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let T : P∩(Ω2\Ω1) → P be a completely continuous operator such that either

(i) ∥ Tu ∥≤∥ u ∥, u ∈ P ∩ ∂Ω1, and ∥ Tu ∥≥∥ u ∥, u ∈ P ∩ ∂Ω2, or
(ii) ∥ Tu ∥≥∥ u ∥, u ∈ P ∩ ∂Ω1, and ∥ Tu ∥≤∥ u ∥, u ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2\Ω1).

For our first result, define positive numbers M1 and M2 by

M1 : = max

{
1

2

[
m2

nL
2

K

∫ ω

ξ
Gn(τ, s)p(s)∇sf∞

]−1

,
1

2

[
m2

nL
2

K

∫ ω

ξ
Gn(τ, s)q(s)∇sg∞

]−1}
,

M2 : = min

{
1

2

[
K

∫ b

a
Gn(s, s)p(s)∇sf0

]−1

,
1

2

[
K

∫ b

a
Gn(s, s)q(s)∇sg0

]−1}
.

Theorem 3.2. Assume that conditions (A1) − (A4) are satisfied. Then, for
each λ, µ satisfying

M1 < λ, µ < M2, (3.1)

there exists a pair (u, v) satisfying (1.1)-(1.2) such that u(t) > 0 and v(t) > 0
on (a, b).
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Proof. Let λ, µ be as in (3.1). Let ϵ > 0 be chosen such that

max

{
1

2

[
m2

nL
2

K

∫ ω

ξ

Gn(τ, s)p(s)∇s(f∞ − ϵ)

]−1

,
1

2

[
m2

nL
2

K

∫ ω

ξ

Gn(τ, s)q(s)∇s(g∞ − ϵ)

]−1}
≤ λ, µ

λ, µ ≤ min

{
1

2

[
K

∫ b

a

Gn(s, s)p(s)∇s(f0 + ϵ)

]−1

,
1

2

[
K

∫ b

a

Gn(s, s)q(s)∇s(g0 + ϵ)

]−1}
.

Let Q be defined as in (2.10), then Q is a cone preserving, completely continuous
operator. By the definitions of f0 and g0, there exists H1 > 0 such that f(u, v) ≤
(f0 + ϵ)(u + v) for (u, v) ∈ P with 0 < (u, v) ≤ H1, and g(u, v) ≤ (g0 + ϵ)(u +
v) for (u, v) ∈ P with 0 < (u, v) ≤ H1. Set Ω1 = {(u, v) ∈ B : ∥ (u, v) ∥< H1}.
Now let (u, v) ∈ P ∩ ∂Ω1, i.e., let (u, v) ∈ P with ∥ (u, v) ∥= H1. Then, in view
of the inequality (2.8) and choice of ϵ, for a ≤ s ≤ b, we have

Qλ(u, v)(t) = λ

∫ b

a

Hn(t, s)p(s)f(u(s), v(s))∇s

≤ λK

∫ b

a

Gn(s, s)p(s)f(u(s), v(s))∇s

≤ λK

∫ b

a

Gn(s, s)p(s)(f0 + ϵ)(u(s) + v(s))∇s

≤ λK

∫ b

a

Gn(s, s)p(s)∇s(f0 + ϵ)[∥ u ∥ + ∥ v ∥]

≤ 1

2
[∥ u ∥ + ∥ v ∥] = 1

2
∥ (u, v) ∥

and so,

∥ Qλ(u, v) ∥≤
1

2
∥ (u, v) ∥ .

Similarly, we prove that ∥ Qµ(u, v) ∥≤ 1
2 ∥ (u, v) ∥. Thus, for (u, v) ∈ P ∩ ∂Ω1

it follows that

∥ Q(u, v) ∥ =∥ (Qλ(u, v), Qµ(u, v)) ∥
=∥ Qλ(u, v) ∥ + ∥ Qµ(u, v) ∥

≤ 1

2
∥ (u, v) ∥ +

1

2
∥ (u, v) ∥

=∥ (u, v) ∥,

that is,

∥ Q(u, v) ∥≤∥ (u, v) ∥ for all (u, v) ∈ P ∩ ∂Ω1. (3.2)

Due to the definition of f∞ and g∞, there exists anH2 > 0 such that f(u, v) ≥
(f∞ − ϵ)(u+ v) for all u, v ≥ H2 and g(u, v) ≥ (g∞ − ϵ)(u+ v) for all u, v ≥ H2.
Set H2 = max{2H1,

K
mnL

H2} and define Ω2 = {(u, v) ∈ P : ∥ (u, v) ∥< H2}. If
(u, v) ∈ P with ∥ (u, v) ∥= H2 then, mint∈[ξ,ω](u+ v)(t) ≥ mnL

K ∥ (u, v) ∥≥ H2,
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by consequently, from (2.9) and choice of ϵ, for a ≤ s ≤ b, we have that

Qλ(u, v)(τ) = λ

∫ b

a

Hn(τ, s)p(s)f(u(s), v(s))∇s

≥ λmnL

∫ ω

ξ

Gn(τ, s)p(s)(f∞ − ϵ)(u(s) + v(s))∇s

≥ λ
m2

nL
2

K

∫ ω

ξ

Gn(τ, s)p(s)∇s(f∞ − ϵ)[∥ u ∥ + ∥ v ∥]

≥ 1

2
∥ (u, v) ∥ .

that is, Qλ(u, v)(t) ≥ 1
2 ∥ (u, v) ∥ for all t ≥ τ and so, Qλ(u, v)(t) ≥ 1

2 ∥ (u, v) ∥ .

Similarly, we find that Qµ(u, v) ≥ 1
2 ∥ (u, v) ∥ . Thus, for (u, v) ∈ P ∩ ∂Ω2 it

follows that

∥ Q(u, v) ∥ =∥ (Qλ(u, v), Qµ(u, v)) ∥
=∥ Qλ(u, v) ∥ + ∥ Qµ(u, v) ∥

≥ 1

2
∥ (u, v) ∥ +

1

2
∥ (u, v) ∥

=∥ (u, v) ∥,
that is,

∥ Q(u, v) ∥≥∥ (u, v) ∥, for all (u, v) ∈ P ∩ ∂Ω2. (3.3)

Applying Theorem 3.1 to (3.2) and (3.3), we obtain that Q has a fixed point
in P ∩ (Ω2\Ω1) such that H1 ≤∥ (u, v) ∥≤ H2, and so (1.1)-(1.2) has a positive
solution. The proof is complete. �

For our next result we define the positive numbers

M3 : = max
{1

2

[m2
nL

2

K

∫ ω

ξ
Gn(τ, s)p(s)∇sf0

]−1
,
1

2

[m2
nL

2

K

∫ ω

ξ
Gn(τ, s)q(s)∇sg0

]−1}
,

M4 : = min
{1

2

[
K

∫ b

a
Gn(s, s)p(s)∇sf∞

]−1
,
1

2

[
K

∫ b

a
Gn(s, s)q(s)∇sg∞

]−1}
.

We are now ready to state and prove our main result.

Theorem 3.3. Assume that conditions (A1) − (A4) are satisfied. Then, for
each λ, µ satisfying

M3 < λ, µ < M4, (3.4)

there exists a pair (u, v) satisfying (1.1)-(1.2) such that u(t) > 0 and v(t) > 0
on (a, b).

Proof. Let λ, µ be as in (3.4) and choose a sufficiently small ϵ > 0 such that

max
{ 1

2

[m2
nL

2

K

∫ ω

ξ

Gn(τ, s)p(s)∇s(f0 − ϵ)
]−1

,
1

2

[m2
nL

2

K

∫ ω

ξ

Gn(τ, s)q(s)∇s(g0 − ϵ)
]−1}

≤ λ, µ

λ, µ ≤ min
{ 1

2

[
K

∫ b

a

Gn(s, s)p(s)∇s(f∞ + ϵ)
]−1

,
1

2

[
K

∫ b

a

Gn(s, s)q(s)∇s(g∞ + ϵ)
]−1}

.
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By the definition of f0 and g0, there exists an H3 > 0 such thatf(u, v) ≥
(f0 − ϵ)(u + v), for all (u, v) with 0 < (u, v) ≤ H3 and g(u, v) ≥ (g0 − ϵ)(u +
v), for all (u, v) with 0 < (u, v) ≤ H3. Set Ω3 =

{
(u, v) ∈ P : ∥ (u, v) ∥< H3

}
and let (u, v) ∈ P∩∂Ω3. Thus we have, from (2.9) and choice of ϵ, for a ≤ s ≤ b,

Qλ(u, v)(τ) = λ

∫ b

a

Hn(τ, s)p(s)f(u(s), v(s))∇s

≥ λmnL

∫ ω

ξ

Gn(τ, s)p(s)f(u(s), v(s))∇s

≥ λmnL

∫ ω

ξ

Gn(τ, s)p(s)(f0 − ϵ)(u(s) + v(s))∇s

≥ λ
m2

nL
2

K

∫ ω

ξ

Gn(τ, s)p(s)(f0 − ϵ)[∥ u ∥ + ∥ v ∥]∇s

≥ 1

2
∥ (u, v) ∥,

that is, ∥ Qλ(u, v) ∥≥ 1
2 ∥ (u, v) ∥ . In a similar manner, ∥ Qµ(u, v) ∥≥ 1

2 ∥
(u, v) ∥ . Thus, for an arbitrary (u, v) ∈ P ∩ ∂Ω3 it follows that

∥ Q(u, v) ∥ =∥ (Qλ(u, v), Qµ(u, v)) ∥
=∥ Qλ(u, v) ∥ + ∥ Qµ(u, v) ∥

≥ 1

2
∥ (u, v) ∥ +

1

2
∥ (u, v) ∥

=∥ (u, v) ∥,

and so,

∥ Q(u, v) ∥≥∥ (u, v) ∥ for all (u, v) ∈ P ∩ ∂Ω3. (3.5)

Now let us define two functions f∗, g∗ : [0,∞) → [0,∞) by

f∗(t) = max
0≤u+v≤t

f(u, v) and g∗(t) = max
0≤u+v≤t

g(u, v).

It follows that f(u, v) ≤ f∗(t) and g(u, v) ≤ g∗(t) for all (u, v) with 0 ≤ u+v ≤ t.
It is clear that the function f∗ and g∗ are nondecreasing. Also, there is no
difficulty to see that

lim
t→∞

f∗(t)

t
= f∞ and lim

t→∞

g∗(t)

t
= g∞.

In view of the definitions of f∞ and g∞, there exists an H4 such that

f∗(t) < (f∞ + ϵ)t for all t ≥ H4, g∗(t) < (g∞ + ϵ)t for all t ≥ H4.

Set H4 = max
{
2H3,

K
mnL

H4

}
, and Ω4 = {(u, v) : (u, v) ∈ P and ∥ (u, v) ∥<

H4}. Let (u, v) ∈ P ∩ ∂Ω4 and observe that, by the definition of f∗, it follows
that for any s ∈ [a, b], we have

f(u(s), v(s)) ≤ f∗(∥ u ∥ + ∥ v ∥) = f∗(∥ (u, v) ∥).
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In view of the observation and by the use of inequality (2.8),

Qλ(u, v)(t) = λ

∫ b

a

Hn(t, s)p(s)f(u(s), v(s))∇s

≤ λK

∫ b

a

Gn(s, s)p(s)f
∗(u(s) + v(s))∇s

≤ λK

∫ b

a

Gn(s, s)p(s)(f∞ + ϵ)(∥ u ∥ + ∥ v ∥)∇s

≤ 1

2
∥ (u, v) ∥,

which implies ∥ Qλ(u, v) ∥≤ 1
2 ∥ (u, v) ∥. In a similar manner, we can prove that

∥ Qµ(u, v) ∥≤ 1
2 ∥ (u, v) ∥. Thus, for (u, v) ∈ P ∩ ∂Ω4, it follows that

∥ Q(u, v) ∥ =∥ (Qλ(u, v), Qµ(u, v)) ∥
=∥ Qλ(u, v) ∥ + ∥ Qµ(u, v) ∥

≤ 1

2
∥ (u, v) ∥ +

1

2
∥ (u, v) ∥

=∥ (u, v) ∥,
and so,

∥ Q(u, v) ∥≤∥ (u, v) ∥, for (u, v) ∈ P ∩ ∂Ω4. (3.6)

Applying Theorem 3.1 to (3.5) and (3.6), we obtain that Q has a fixed point
in P ∩ (Ω4\Ω3) such that H3 ≤∥ (u, v) ∥≤ H4, and so (1.1)-(1.2) has a positive
solution. The proof is complete. �

4. Nonexistence results

In this section, we give some sufficient conditions for the nonexistence of
positive solutions to the BVP (1.1)-(1.2).

Theorem 4.1. Assume that (A1)−(A4) hold. If f0, f∞, g0, g∞ < ∞, then there
exist positive constants λ0, µ0 such that for every λ ∈ (0, λ0) and µ ∈ (0, µ0), the
boundary value problem (1.1)-(1.2) has no positive solution.

Proof. Since f0, f∞ < ∞, we deduce that there exist M
′

1,M
′′

1 , r1, r
′

1 > 0, r1 < r
′

1

such that
f(u, v) ≤ M

′

1(u+ v), ∀ u, v ≥ 0, u+ v ∈ [0, r1],

f(u, v) ≤ M
′′

1 (u+ v), ∀ u, v ≥ 0, u+ v ∈ [r
′

1,∞).

We consider M1 = max
{
M

′

1,M
′′

1 ,maxr1≤u+v≤r
′
1

f(u,v)
u+v

}
> 0. Then, we obtain

f(u, v) ≤ M1(u + v), ∀ u, v ≥ 0. Since g0, g∞ < ∞, we deduce that there exist

M
′

2,M
′′

2 , r2, r
′

2 > 0, r2 < r
′

2 such that

g(u, v) ≤ M
′

2(u+ v), ∀ u, v ≥ 0, u+ v ∈ [0, r2],

g(u, v) ≤ M
′′

2 (u+ v), ∀ u, v ≥ 0, u+ v ∈ [r
′

2,∞).
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We consider M2 = max
{
M

′

2,M
′′

2 ,maxr2≤u+v≤r
′
2

g(u,v)
u+v

}
> 0. Then, we obtain

g(u, v) ≤ M2(u + v), ∀ u, v ≥ 0. We define λ0 = 1
2M1B

and µ0 = 1
2M2D

, where

B = K
∫ b

a
Gn(s, s)p(s)∇s and D = K

∫ b

a
Gn(s, s)q(s)∇s. We shall show that

for every λ ∈ (0, λ0) and µ ∈ (0, µ0), the problem (1.1)-(1.2) has no positive
solution.

Let λ ∈ (0, λ0) and µ ∈ (0, µ0). We suppose that (1.1)-(1.2) has a positive
solution (u(t), v(t)), t ∈ [a, b]. Then, we have

u(t) = Qλ(u, v)(t) = λ

∫ b

a

Hn(t, s)p(s)f(u(s), v(s))∇s

≤ λK

∫ b

a

Gn(s, s)p(s)f(u(s), v(s))∇s

≤ λK

∫ b

a

Gn(s, s)p(s)M1(u(s) + v(s))∇s

≤ λM1K

∫ b

a

Gn(s, s)p(s)(∥ u ∥ + ∥ v ∥)∇s

= λM1B ∥ (u, v) ∥, ∀ t ∈ [a, b].

Therefore, we conclude

∥ u ∥≤ λM1B ∥ (u, v) ∥< λ0M1B ∥ (u, v) ∥= 1

2
∥ (u, v) ∥ .

In a similar manner,

v(t) = Qµ(u, v)(t) = µ

∫ b

a

Hn(t, s)q(s)g(u(s), v(s))∇s

≤ µK

∫ b

a

Gn(s, s)q(s)g(u(s), v(s))∇s

≤ µK

∫ b

a

Gn(s, s)q(s)M2(u(s) + v(s))∇s

≤ µM2K

∫ b

a

Gn(s, s)q(s)(∥ u ∥ + ∥ v ∥)∇s

= µM2D ∥ (u, v) ∥, ∀ t ∈ [a, b].

Therefore, we conclude

∥ v ∥≤ µM2D ∥ (u, v) ∥< µ0M2D ∥ (u, v) ∥= 1

2
∥ (u, v) ∥ .

Hence, ∥ (u, v) ∥=∥ u ∥ + ∥ v ∥< 1
2 ∥ (u, v) ∥ +1

2 ∥ (u, v) ∥=∥ (u, v) ∥, which
is a contradiction. So, the boundary value problem (1.1)-(1.2) has no positive
solution. �

Theorem 4.2. Assume that (A1)− (A4) hold.

(i) If f0, f∞ > 0, then there exists a positive constant λ̃0 such that for every λ >
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λ̃0 and µ > 0, the boundary value problem (1.1)-(1.2) has no positive solution.
(ii) If g0, g∞ > 0, then there exists a positive constant µ̃0 such that for every µ >
µ̃0 and λ > 0, the boundary value problem (1.1)-(1.2) has no positive solution.

(iii)If f0, f∞, g0, g∞ > 0, then there exist positive constants
˜̃
λ0 and ˜̃µ0 such that

for every λ >
˜̃
λ0 and µ > ˜̃µ0, the boundary value problem (1.1)-(1.2) has no

positive solution.

Proof. (i) Since f0, f∞ > 0, we deduce that there existm
′

1,m
′′

1 , r3, r
′

3 > 0, r3 < r
′

3

such that
f(u, v) ≥ m

′

1(u+ v), ∀ u, v ≥ 0, u+ v ∈ [0, r3],

f(u, v) ≥ m
′′

1 (u+ v),∀ u, v ≥ 0, u+ v ∈ [r
′

3,∞).

We introduce m1 = min
{
m

′

1,m
′′

1 ,minr3≤u+v≤r
′
3

f(u,v)
u+v

}
> 0. Then, we obtain

f(u, v) ≥ m1(u + v), ∀ u, v ≥ 0. We define λ̃0 = K
m2

nL
2m1A

> 0, where A =∫ ω

ξ
Gn(s, s)p(s)∇s. We shall show that for every λ > λ̃0 and µ > 0 the problem

(1.1)-(1.2) has no positive solution.

Let λ > λ̃0 and µ > 0. We suppose that (1.1)-(1.2) has a positive solution
(u(t), v(t)), t ∈ [a, b]. Then, we obtain

u(t) = Qλ(u, v)(t) = λ

∫ b

a

Hn(t, s)p(s)f(u(s), v(s))∇s

≥ λmnL

∫ ω

ξ

Gn(s, s)p(s)f(u(s), v(s))∇s

≥ λmnL

∫ ω

ξ

Gn(s, s)p(s)m1(u(s) + v(s))∇s

≥ λ
m2

nL
2

K
m1

∫ ω

ξ

Gn(s, s)p(s) ∥ (u, v) ∥ ∇s

= λ
m2

nL
2

K
m1A ∥ (u, v) ∥ .

Therefore, we deduce

∥ u ∥≥ u(t) ≥ λ
m2

nL
2

K
m1A ∥ (u, v) ∥> λ̃0

m2
nL

2

K
m1A ∥ (u, v) ∥=∥ (u, v) ∥ .

and so, ∥ (u, v) ∥=∥ u ∥ + ∥ v ∥≥∥ u ∥>∥ (u, v) ∥, which is a contradiction.
Therefore, the boundary value problem (1.1)-(1.2) has no positive solution.

(ii) Since g0, g∞ > 0, we deduce that there exist m
′

2,m
′′

2 , r4, r
′

4 > 0, r4 < r
′

4 such
that

g(u, v) ≥ m
′

2(u+ v), ∀ u, v ≥ 0, u+ v ∈ [0, r4],

g(u, v) ≥ m
′′

2 (u+ v), ∀ u, v ≥ 0, u+ v ∈ [r
′

4,∞).

We introduce m2 = min
{
m

′

2,m
′′

2 ,minr4≤u+v≤r
′
4

g(u,v)
u+v

}
> 0. Then, we obtain

g(u, v) ≥ m2(u + v), ∀ u, v ≥ 0. We define µ̃0 = K
m2

nL
2m2C

> 0, where C =
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ξ
Gn(s, s)q(s)∇s. We shall show that for every µ > µ̃0 and λ > 0 the problem

(1.1)-(1.2) has no positive solution.
Let µ > µ̃0 and λ > 0. We suppose that (1.1)-(1.2) has a positive solution

(u(t), v(t)), t ∈ [a, b]. Then, we obtain

v(t) = Qµ(u, v)(t) = µ

∫ b

a

Hn(t, s)q(s)g(u(s), v(s))∇s

≥ µ mnL

∫ ω

ξ

Gn(s, s)q(s)g(u(s), v(s))∇s

≥ µ mnL

∫ ω

ξ

Gn(s, s)q(s)m2(u(s) + v(s))∇s

≥ µ
m2

nL
2

K
m2

∫ ω

ξ

Gn(s, s)q(s)[∥ u ∥ + ∥ v ∥]∇s

= µ
m2

nL
2

K
m2C ∥ (u, v) ∥ .

Therefore, we deduce

∥ v ∥≥ v(t) ≥ µ
m2

nL
2

K
m2C ∥ (u, v) ∥> µ̃0

m2
nL

2

K
m2C ∥ (u, v) ∥=∥ (u, v) ∥ .

and so, ∥ (u, v) ∥=∥ u ∥ + ∥ v ∥≥∥ v ∥>∥ (u, v) ∥, which is a contradiction.
Therefore, the boundary value problem (1.1)-(1.2) has no positive solution.

(iii) Because f0, f∞, g0, g∞ > 0, we deduce as above, that there existm1,m2 >
0 such that f(u, v) ≥ m1(u + v), g(u, v) ≥ m2(u + v), ∀ u, v ≥ 0. We define
˜̃
λ0 = k

2m2
nL

2m1A

(
= λ̃0

2

)
and ˜̃µ0 = k

2m2
nL

2m2C

(
= µ̃0

2

)
. Then for every λ >

˜̃
λ0

and µ > ˜̃µ0, the problem (1.1)-(1.2) has no positive solution.

Indeed, let λ >
˜̃
λ0 and µ > ˜̃µ0. We suppose that (1.1)-(1.2) has a positive

solution (u(t), v(t)), t ∈ [a, b]. Then in a similar manner as above, we deduce

∥ u ∥≥ λ
m2

nL
2

K
m1A ∥ (u, v) ∥, ∥ v ∥≥ µ

m2
nL

2

K
m2C ∥ (u, v) ∥,

and so,

∥ (u, v) ∥ =∥ u ∥ + ∥ v ∥

≥ λ
m2

nL
2

K
m1A ∥ (u, v) ∥ +µ

m2
nL

2

K
m2C ∥ (u, v) ∥

>
˜̃
λ0

m2
nL

2

K
m1A ∥ (u, v) ∥ + ˜̃µ0

m2
nL

2

K
m2C ∥ (u, v) ∥

=
1

2
∥ (u, v) ∥ +

1

2
∥ (u, v) ∥=∥ (u, v) ∥

which is a contradiction. Therefore, the boundary value problem (1.1)-(1.2) has
no positive solution. �
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