• Title/Summary/Keyword: Structure identification

Search Result 1,727, Processing Time 0.027 seconds

Structural Design of Optimized Fuzzy Inference System Based on Particle Swarm Optimization (입자군집 최적화에 기초한 최적 퍼지추론 시스템의 구조설계)

  • Kim, Wook-Dong;Lee, Dong-Jin;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.384-386
    • /
    • 2009
  • This paper introduces an effectively optimized Fuzzy model identification by means of complex and nonlinear system applying PSO algorithm. In other words, we use PSO(Particle Swarm Optimization) for identification of Fuzzy model structure and parameter. PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. This paper identifies the premise part parameters and the consequence structures that have many effects on Fuzzy system based on PSO. In the premise parts of the rules, we use triangular. Finally we evaluate the Fuzzy model that is widely used in the standard model of gas data and sew data.

  • PDF

A Study on Identification of State-Space Model for Refuse Incineration Plant (쓰레기 소각플랜트의 상태공간모델 규명에 관한 연구)

  • Hwang, l-Cheol;Jeon, Chung-Hwan;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.354-362
    • /
    • 2000
  • This paper identifies a discrete-time linear combustion model of Refuse Incineration Plant(RIP) which characterizes steam generation quantity, where the RIP is considered as a MIMO system with thirteen-inputs and one-output. The structure of RIP model is described as an ARX model which are analytically obtained from the combustion dynamics. Furthermore, using the Instrumental Variable(IV) identification algorithm, model structure and unknown parameters are identified from experimental input-output data sets, In result, it is shown that the identified ARX model well approximates the input-output combustion characteristics given by experimental data sets.

Performance Enhancement of System Identification Model for Vibration-Based Damage Detection in Flawed Plate-Girder Bridges (결함이 있는 판형교의 진동기초 손상검색을 위한 구조식별모델의 성능향상)

  • 백종훈;김정태;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.443-450
    • /
    • 2003
  • System identification techniques can be used to build a baseline modal model for a flawed structure that has no modal information on its as-built state. The accuracy of a system identification proposed by Stubbs and Kim is analyzed for plate-girder bridges and its impact on the accuracy of damage detection in those structures is also analyzed. A laboratory-scale model plate-girder is experimentally tested and the initial four bending modes are examined for certain damage scenarios. The performance of individual baseline modal models is assessed by detecting damage in the model structure.

  • PDF

공작기계 구조물의 System Identification에 관한 연구

  • 하병한;노승훈;정성환;김교형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.323-328
    • /
    • 1992
  • The vibrations of the main spindles of the M/C tools is the most important in the con- sideration of the dynamic performance of the M/C tools. In order to analyze and predict the dynamic behaviour of the machine tool structure it is necessary to have the mathematical model of the system. The system identification is the procedure to provide us with the mathematical model of the system of which we want to know the dynamic characteristics. This study illustrates a procedure of the system identification of the structure of the M/C tools to predict the dynamic behaviour of the machine and further to have the basis for the design of M/C tools.

System Identification of a Three-Story Test Structure based on Finite Element Model (유한요소모델에 기초한 3층 건물모델의 시스템 식별)

  • Kang, Kyung-Soo;Lee, Sang-Hyun;Joo, Seok-Jun;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.72-77
    • /
    • 2003
  • In this paper, an experimental verification of system identification technique for constructing finite element model is conducted for a three-story test structure equipped with an active mass driver (AMD). Twenty Gaussian white noises were used as the input for AMD, and the corresponding accelerations of each floors are measured. Then, the complex frequency response function (FRF) for the input, the force induced by the AMD, was obtained and subsequently, the Markov parameters and system matrices were estimated. The magnitudes as well as phase of experimentally obtained FRFs match well with those of analytically obtained FRFs.

  • PDF

Automatic Acquisition of Lexical-Functional Grammar Resources from a Japanese Dependency Corpus

  • Oya, Masanori;Genabith, Josef Van
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.375-384
    • /
    • 2007
  • This paper describes a method for automatic acquisition of wide-coverage treebank-based deep linguistic resources for Japanese, as part of a project on treebank-based induction of multilingual resources in the framework of Lexical-Functional Grammar (LFG). We automatically annotate LFG f-structure functional equations (i.e. labelled dependencies) to the Kyoto Text Corpus version 4.0 (KTC4) (Kurohashi and Nagao 1997) and the output of of Kurohashi-Nagao Parser (KNP) (Kurohashi and Nagao 1998), a dependency parser for Japanese. The original KTC4 and KNP provide unlabelled dependencies. Our method also includes zero pronoun identification. The performance of the f-structure annotation algorithm with zero-pronoun identification for KTC4 is evaluated against a manually-corrected Gold Standard of 500 sentences randomly chosen from KTC4 and results in a pred-only dependency f-score of 94.72%. The parsing experiments on KNP output yield a pred-only dependency f-score of 82.08%.

  • PDF

Damage identification in a railroad structures using operational deflection shape (가동변형형상을 이용한 철도구조물의 손상인식)

  • Choi, Sang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.56-64
    • /
    • 2008
  • To maintain effectively the functionality of major railroad facilities such as bridges, identifying and evaluating damage in a structure and taking appropriate action via continuous structural health monitoring are very important. However, most damage identification methods for structural health monitoring developed to date utilize modal domain responses which inevitably contain errors in transforming the domain of responses. In this paper, a damage identification method using time-domain operational deflection shapes is proposed. Since the proposed method utilizes time-domain responses, the error in the process of transformation to response domain can be avoided, and the accuracy of structural health evaluation can be improved. The feasibility of the proposed method is verified via a numerical example of a simple bridge structure.

  • PDF

Estimation of Roll Related Coefficients of a Ship by Using the System Identification Method (시스템 식별법을 이용한 선박의 횡동요 계수 추정)

  • 윤현규;손남선
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.53-58
    • /
    • 2004
  • When a fast container ship or a naval vessel is turning, comparable roll motions occur. Therefore, roll effect has to be considered in the horizontal equations of motion of the ship to predict the maneuverability well. In this thesis, a new method to determine a roll model structure and estimate its coefficients by applying the system identification technique to the data of sea trial tests was proposed. The simulation results from the estimated roll model were well consistent with the true one in spite of the difference between the estimated and the true model structures of roll hydrodynamic moment.

State-Space Model Identification of Arago's Disk System (아라고 원판 시스템의 상태공간 모델 식별)

  • Kang, Ho-Kyun;Choi, Soo-Young;Choi, Goon-Ho;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2687-2689
    • /
    • 2000
  • In many cases the systems are so complex that it is not possible to obtain reasonable models using physical insight. Also a model based on physical insight contains a number of unknown parameters even if the structure is derived from physical laws. These problems can be solved by system identification. In this paper, Arago's disk system which has both stable and unstable regions is selected as an example for identification and a state-space model is identified using tailor-made model structure of this system. In stable region, a state-space model of Arago's disk system is identified through open loop experiment and a state-space model of unstable region is identified through closed loop experiment after using fuzzy controller to stabilize unstable system.

  • PDF

Estimation of Localized Structural Parameters Using Substructural Identification (부분구조 추정법을 이용한 국부구조계수추정)

  • 윤정방;이형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.119-126
    • /
    • 1996
  • In this paper, a method of substructural identification is presented for the estimation of localized structural parameters. for this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for the substructure to process the measurement data impaired by noises. The sequential prediction error method is used fer the estimation of unknown localized parameters. Using the substructural method, the number of unknown parameters can be reduced and the convergence and accuracy of estimation can be improved. For some substructures, the effect of the input excitation is expressed in terms of the responses at the inferences with the main structure, and substructural identification may be carried out without measuring the actual input excitation to the whole structure. Example analysis is carried out for idealized structural models of a multistory building and a truss bridge. The results indicate that the present method is effective and efficient for local damage estimation of complex structures.

  • PDF