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System Identification of a Three-Story Test Structure based on Finite Element Model
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ABSTRACT

In this paper, an experimental verification of system identification technique for constructing finite element mode] is conducted for

a three-story test structure equipped with an active mass driver (AMD). Twenty Gaussian white noises were used as the input for

AMD, and the corresponding accelerations of each floors are measured. Then, the complex frequency response function (FRF) for

the input, the force induced by the AMD, was obtained and subsequently, the Markov parameters and system matrices were estimated.

The magnitudes as well as phase of experimentally obtained FRFs match well with those of analytically obtained FRFs.

1. Introduction

In recent years, researches have been extensively carried
out analytically and experimentally on the active control
of civil engineering structures subjected to earthquake
and wind loads [1, 2]. Generally, the accurate modeling
of the structure is required in active control in order to
achieve stability and desired control performance.
Accordingly, various system identification methods have
been utilized for the accurate modeling of the structure [3,
4]. In special, most of experimental research on active
control relies on the accurate system identification, and
the control performances of adopted control algorithms
are guaranteed by the accurate estimation of test models
[5-8].

For design of control systems in active control of
structures under seismic loads, two separate system
matrices are first identified for two input signals —
earthquake load and active control force — and then
condensed into an integrated system matrix [9, 10]. This
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procedure, however, is only applicable for small-sized
structures which are suitable for the shaking table test. It
is almost impossible to apply seismic forces to real civil
structures for system identification purpose.

In general, the mass, damping, and stiffness of civil
structures are modeled using the finite element method
(FEM). The FEM model has an advantage that
earthquake loads are easily modeled. However, the FEM
model may show a large discrepancy with the actual
structure in terms of dynamic characteristics due to
uncertainties included in modeling. In this case, it is
required to refine the FEM model applying system
identification techniques in order to guarantee the desired
performance of control system [11, 12]. Otherwise, a
new control algorithm, which shows a robust control
performance in spite of the uncertainties in FEM
modeling, needs to be developed.

In this paper, an experimental verification of system
identification technique for constructing second-order
system is conducted for a three-story test structure
equipped with an active mass driver (AMD). All of
acceleration information of AMD, shaking table, and

three floors are used for the system identification.

2. EXPERIMENTAL SETUP



Experimental investigations were performed in the
Structural Lab at Seoul National University, Seoul,
Korea. The test structure used in this experiment was a
three-story, single-bay, steel frame shown in Figure 1.
The height and width of the structure were 120 ¢m and
60 cm, respectively. Shevron braces were used to stiffen
the test structure so that its behavior in moving direction
governed. The structure was excited by a uniaxial
shaking table on which it was mounted. The shaking
table used an AC servomotor and its movement was
controlled by a separate computer through a National
Instrument (NI) LAB-PC-1200 D/A board and an NI
BNC-2081 board.

The control force was supplied by an AMD attached to
the top floor of the test structure. The AMD was
comprised of a moving mass of 4.7 kg, a ball screw unit,
and an AC servomotor. The maximum stroke of the
AMD was * 150 mm with the maximum acceleration
generating capacity of 500 cm/sec?.

=

Figure 1. Test Structure with AMD system

The accelerometers were positioned on each floor of
the structure to measure the absolute accelerations of the
test structure. Additionally, accelerometers located on the
AMD and on
accelerations of the AMD and the ground excitation. A
differential (LVDT)

displacement transducer was installed on the first floor to

the base measured the absolute

linear  variable transformer
measure the floor displacement. The data acquisition and
implementation of the digital controller were performed

using a real-time digital signal processor (DSP). The

primary tasks of the data acquisition board were to
perform the analog to digital (A/D) conversion of the
measured acceleration data, and to perform the digital to
analog (D/A) conversion of the command signal
computed by the control program. A 16-channel data
acquisition system was employed using a NI PCI-MIO-
16XE-50 board and a NI BNC-2090 board. The
schematic of the entire test system is presented in Figure
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Figure 2. Schematic diagram of experimental setup

3. SYSTEM IDENTIFICATION

It is critical to develop an accurate analytical model of
the structure in the experimental verification of control
systems [5]. In general, the steps involved in the
experiment on a control system are (1) establishing an
exact model of test structure applying the system
identification techniques, (2) designing a control system
based on the identified model, and (3) experimental
verification of the control system. In this chapter, a FEM
model of the test structure is derived in terms of mass,
damping, and stiffness, and a comparison of the
experimental and analytical transfer functions is
performed to verify the accuracy of the obtained model.
This FEM model will serve as a basis model for the
robustness verification of the proposed probabilistic
control algorithm against the modeling uncertainties in
the subsequent sections.

In this study, system identification for the test structure

and control system was performed in the frequency-
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domain. The system inputs were the accelerations of the
AMD, and the system outputs were the absolute
accelerations of three floors. The steps involved in the
system identification procedure included (1) obtaining a
complex frequency response function (FRF) using the
system inputs and outputs; (2) estimating the system
Markov parameters from the FRF; (3) minimum
realization of the system obtaining a state-space model
from the Markov parameters; and (4) obtaining the
modal properties from the state-space model and
constructing the analytical FEM model.

3.1 Complex Frequency Response Function

Consider a discrete multivariable linear system described
by
2(k+1)=A,z(k)+ B, u(k)
y(k) =C jz(k)+ D, u(k)

(1-a)
(1-b)

where z(k) is an (n X 1) state vector, y(k) is an (m X 1)
system output vector, and u(k) is an (» X 1) system input
vector for k = 0,---,1-1 with 4, B, C,; and D, being
system matrices with appropriate dimensions. The
relationship between u(f) and y(f) can be expressed as
follows assuming zero initial conditions [3].

YRy =3 Yu(k-7) @

where Y, (1= 1,--+, ) is the system Markov parameters
to be determined. Applying
transform (DFT) to Eq. (3) yields

the discrete Fourier

Y(k)=G(z,)U(k) )
where Y(k) and U(k) are Fourier transforms of y(k) and
u(k), respectively, and

27k

—
]

G(z,)= ZY,e_j 4
=0

20k
-
z, =€

in which the matrix G(z;) is the complex FRF for the
frequency at 2ak/l, z, is the z-transform variable, and
Jj=~-1 . For multi-input multi-output (MIMO)
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systems, in general, the complex FRF is obtained from N
experiments or N data segments of a long experiment
record. N relationships, post-
multiplying both sides of Eq. (4) by U’(k), which is the
complex conjugate transpose of U(k), produces

For input-output

ZN: YO (k) = G(zk)i U (U (k) (5)

i=l i=l

where U"(k) and Y(k), respectively, represent the DFTs
of the input sequence, u(k), and output sequence, y(k),
for i-th data (i = 1,---, N). Then, the complex FRF is

calculated as
-1
[ ] ©)

3.2 System Markov Parameters
To obtain the system Markov parameters, which

ZN:U‘”(k)U“)'(k)

G(z) =3 ¥ (U (k)

i=l

represent a pulse response of the system, we first
decompose the complex FRF using the left matrix
fraction method as [3]

G(z,)=0(z,)"R(z,) )

where matrix polynomials Q (z,) and R(z,) are
0(z)=1,+07 +-+0,5"  ®
E(zk)=1—20+1_ilz;'+~--+1~1pz;” 'C)]

assuming the orders of both polynomials to be p and I, is
an identity matrix of order m. @Q,(i=1,---,p)isanmx

m real matrix and I—?i(i 1,---,p) is an m X r real
matrix. Pre-multiplying Eq. (7) by Q(z,) and

rearranging terms of like powers lead to

Y,=D,=R, (10)
Y, =I_1,— _,.Y,_l forr=1,-,p (11
i=1
P __
Y, =—z Y., forr=p+l,---, (12)

3.3 Minimum Realization



A realization of the system is to obtain the system
matrices, A, By, and C, which satisfy the discrete
equation of motion for the system, from the Markov
parameters, Y, (r = 1,-++, ), presented in Egs. (10) to
(12). Any system has an infinite number of realizations
which will predict the identical response subjected to a
specific input. The minimum realization means to obtain
a state-space model with the smallest state-space
dimension among the infinite realizable systems, which
represent the same input-output relationship. In this study,
the Eigensystem Realization Algorithm method with
Data Correlation (ERA/DC) is applied to estimate the
system matrices from the Markov parameters. ERA/DC
is a least-square fit to the output auto-correlations and
cross-correlations over a defined number of lag values.
Applying ERA/DC, the realization, ;‘i ,l} , and 6 , of
system matrices, A, B, and C, are {3]

A=Z]"RTH1)S, X" (13)

B=[ETR | H(O)E, (14)
and

C=EIRZX (15)

where the superscript T denotes a pseudo-inverse, E, =
[, 0,...0,]T with a null matrix O, of order % and H{(k) is
the block correlation Henkel matrix and is factorized
using singular value decomposition for k£ = 0 such that
H(0)=RxS"

in which the columns of matrices R and § are orthogonal,
i.e., R'R = I (= identity matrix) and $’S =1, and X' is a
rectangular matrix defined as

. z 0 16)
“lom o (
with
X =diag(o,,0,,,0,) (17)

where @ is a (n x 1) null vector and o; (i = 1,---,n) is
monotonically decreasing constants.

Transforming the above discretized state-space matrices
into the continuous state-space form, we obtain

2=Az+B.u (18)
y=C.z+D.u (19
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4. FEM Model

An n-degree-of-freedom (DOF) second order system
subjected to a control force u is given by

Mx+Cx+Kx=bu (20)

where M, C, and K are, respectively, the mass, damping,
and stiffness matrices of size nxn, and x is the
displacement response vector of size nx1, and b is the
force influence matrix.

control Applying modal

transformation, Eq. (20) can be expressed as

fi+An+2n=®" bu 1)
where x = @, @ is the eigenvector satisfying the
following characteristic equation

K& = MoQ (22)
SMD =1 (23)

and A and £, respectively, are

Q=0"K® =diag(w’,i=1,.,n) (4

ni?

A=®"CP = diag(2l,w,;,i=1,..,n) (25)

in which w,; and ¢; are natural frequency and damping
ratio of ith mode, respectively.

The acceleration responses of the structure in Eq. (20)
are then calculated using modal coordinates, #, as

X=@i=—P2n—DdAn+bu (26)

and the state-space equations in Eqgs. (18) and (19) are
transformed into the following complex modal equations.

g=A4q9+Bu @n
y=Cq+D.u (28)

in which z =¥q, Bq ='I’"BC, and Cq =CY¥
where ¥ is the eigenvalue matrix that satisfies the
following characteristic equation of 4,.

AY =VA, (29)

and matrices 4,, B,, and C,, and vector g are



A “q1
A by
A, = . B, =| |,
A'n . —qn
L ﬂ’nd _bqn
—qul | g, l
H 9
c,=| | q=|: (30)
Con q,
n] L7
where A, =0, + jw, and /T, is the complex

conjugate of 1;. The variable ¢ in Eq. (30) in the complex
coordinate system possesses no physical implication. By
applying the common basis-normalized structural
identification (CBSI) method of Alvin et al. [11], the
variable ¢ can be transformed into the modal
displacement velocity model, which has the physical
meaning. The following transformation is used for the

coordinate transformation in CBSI.

T
9q; n;

where the transformation matrix V; is given as

j | oi—Jjo, -l|-0,-ro, 1
Vi=d,=— : 2 2
20,|-0,-jo 1 |-~ o,-rn

i i

}(32)

in which r, =Im(b,)/Re(b;). d; may be selected
arbitrarily but the corresponding mode shapes are not
mass-normalized ones. If a sensor is located at the same
place as the actuator, mode shapes can be converted into
mass-normalized ones by setting d ; as follows.

Io \F 2Re(b,) 33)
" (o, +rw)Re(c;) - (ro, — ;) Im(c,;)

If transforming Eq. (28) applying the transformation
matrix V; in Eq. (32) results in

y=Hn+H+D.u (34)

then, mode shapes can be obtained from Egs. (26) and
(34) such that

&=-H Q" 35)

Using the mode shapes obtained in Eq. (35), the
following mass matrix can be calculated.

M=(@s")’ (36)

and the stiffness matrix of the structure, K, is obtained as

(14]
K=MoQd'™M (37)

Similarly, the damping matrix, C, is expressed as

C=MDADP™™M (38)

5. Identification Result

Twenty Gaussian white noises (N = 20) were used as
the input for AMD, and the corresponding accelerations
of each floors are measured. Then, the complex FRF for
the input, the force induced by the AMD, was obtained
and subsequently, the Markov parameters and system
System matrices and

matrices were estimated.

corresponding analytical model are listed in Appendix 1.
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Figure 3. Comparison of the FRFs from the input force of
AMD to the absolute acceleration of the first floor

The FRFs of the analytically estimated model are
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compared with the experimentally obtained ones in
Figures 3 and 4 where the FRFs from the input force of
AMD to the absolute acceleration of the first and second
floor are shown. Note that the experimentally obtained
FRFs in the figures are the averaged ones for twenty
inputs. In Figures 4 and 5, it is observed that magnitudes
as well as phase of experimentally obtained FRFs match
well with those of analytically obtained FRFs. The
natural frequencies and damping ratios for the first three
modes are, respectively, 2.67, 7.78 and 11.68Hz and 0.67,
2.08 and 3.28%.
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Figure 4. Comparison of the FRFs from the input force of
AMD to the absolute acceleration of the third floor

6. Conclusion

In this paper, an experimental verification of system
identification technique for constructing finite element
model is conducted for a three-story test structure
equipped with an active mass driver (AMD). Twenty
Gaussian white noises were used as the input for AMD,
and the corresponding accelerations of each floors are
measured. Then, the complex FRF for the input, the
induced by the AMD, was
subsequently, the Markov parameters

force obtained and
and system
matrices were estimated. The magnitudes as well as
phase of experimentally obtained FRFs match well with

those of analytically obtained FRFs.
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