• Title/Summary/Keyword: Structural frame work

Search Result 157, Processing Time 0.027 seconds

A Work Process for Productivity Improvement of Concrete Structural Frame Work in Tall Building (초고층 골조공사 생산성 향상을 위한 작업 프로세스 개선)

  • Jang Ji-Sun;Shin Yoon-Seok;Kang Kyoung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.161-164
    • /
    • 2005
  • According to the trend of tail building, it is essential to improve productivity in tall building construction. However, the study on that is insufficient until now. Therefore, the purpose of this study is to propose a new work process of efficient concrete structural fame work to improve productivity in tall building construction. The results of being applied proposed work process are that the 5day cycle time of concrete structural frame work is cut by 0.5day and the quantity of rebar to be demanded in concrete structural frame work is reduced.

  • PDF

Cost Analysis of the Structural Work of Green Frame

  • Joo, Jin-Kyu;Kim, Sun-Kuk;Lee, Goon-Jae;Lim, Chae-Yeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.401-414
    • /
    • 2012
  • The adoption of Green Frame is expected to provide economic benefits, since construction costs are reduced by the in-situ production of precast concrete column and beam. The cost reduction can ultimately be realized by saving transportation costs and the overhead and profit of PC plants. The cost structure of Green Frame, which is built up using composite precast concrete members, is similar to that of a bearing-wall structure, but the difference in construction process has resulted in some cost differences for a few items. In particular, production and installation is the principal work involved in Green Frame made by precast concrete members, while form and concrete work is the principal work for a bearing-wall structure. As such, the rental time and fee for a tower crane should be compared through time analysis. To verify reliability, this study focused on developed residential projects to estimate the construction costs. Through this analysis, it was found that the costs of Green Frame were 1.57% lower than the costs of bearing-wall structure. The results of this study will help in the development of a management plan for the structural work of Green Frame.

The Productivity Analysis by Slab Formwork of Structural Frame Work in Tall Building Construction (초고층 골조공사의 바닥 거푸집별 생산성 분석;기준층 3일 공정을 중심으로)

  • Kim, Tae-Hoon;Shin, Yoon-Seok;Cho, Seong-Soo;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.115-118
    • /
    • 2007
  • A tall building construction is needed to reduce the construction duration for project profitability. Reducing the cycle time of typical floor in the structural frame work which have the largest duration in the whole construction, greatly affects construction duration. Nowadays, some projects are accomplished in the 3 day cycle. In order to accomplish efficiently 3 day cycle, productivity information of similar projects is supported. Therefore, this study proposed labor productivity and application by slab formwork to construct by the 3 day cycle. In order to perform an analysis, we selected 3 cases and analyzed the labor productivity on the basis of the amount of slab forms, labors, and durations. Then, we performed the questionnaire to analyze the application by formwork of tall building construction engineers. This study will contribute to establish a reasonable scheduling in structural frame work of a new similar project.

  • PDF

Influence of the Structural Framework on the Critical Path of Finish Works in Winter Season -Focusing on Case Study of High-rise Apartment Housing- (동절기 골조공사 시행이 마감공사의 주공정선에 미치는 영향 -아파트 공사의 사례분석을 중심으로-)

  • Han, Choong-Hee;Bang, Jong-Dae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.1 s.29
    • /
    • pp.148-158
    • /
    • 2006
  • Public construction companies have strictly followed a rule that they should not do the works using water such as concrete pouring for the structural frame for a certain period during the winter season. It is usually known that the designated non-working period during the winter causes increase of the project duration and the project cost escalation. The halted work also makes negative effects on national economy because it reduces worker's income. However, the situation would be a lot better if the work for the structural frame is allowed under some conditions. The structural framework done alone without being followed by finish works gives a lot of stresses on the finish works. In this sense, this study examines how the structural framework performed during the winter season affect on the critical path of the finish works. To accomplish the objective of this research, the subnet for the finish works as well as a master network are prepared along with critical paths for a virtual construction site. Using the prepared networks, simulations are carried out to see the effects described above. This study is expected to be used in estimating the construction duration of high-rise apartment housing when the site work for the structural frame should be performed during this period.

Construction Application of a Newly Developed Form-Latticed Prefabricated Steel Reinforced Concrete Column (Form-LPSRC 기둥 개발 및 적용 연구)

  • Baek, Hojin;Lee, Seung-Hwan;Kim, Sooyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.487-495
    • /
    • 2014
  • Shortening the construction duration of structural frame work is extremely important because the work accounts for a major percentage of all cost and duration in large projects. For this reason, new construction methods to reduce the duration of structural frame work are being continuously studied and developed. A PSRC composite column, which uses steel angles instead of H-beams, has the advantages of flexural strength and ductility. Moreover, with this PSRC technique, conventional work for reinforcing bars in columns in practice can be skipped. However, one limitation exists in which the form work is still required. This research proposes a Form-LPSRC column method that is prefabricated with the column frame that includes permanent forms attached. Feasibility was examined with mock-up specimens and finally, the technique applied to real practice. Compared to the conventional SRC column method, this study demonstrated that the proposed technique has many advantages in construction duration, cost, quality, safety and environment.

Optimization of Estimating Duration of the Structural Frame for the High-rise Apartment Housing during the Winter season -Focusing on One Cycle Time Scheduling Mechanism of the Typical Floor- (동절기 아파트 골조공사의 적정공기 산정에 관한 연구 - 기준층 사이클 공정분석을 중심으로 -)

  • Bang Jong-Dae;Han Choong-Hee;Kim Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.170-178
    • /
    • 2004
  • Public construction companies have strictly followed a rule that they should not work in the wet area such as structural frame for a certain period during the winter season. It is usually known that the non-working period during the winter causes increase of the project duration, and the project cost escalation. Also, it makes negative effects on national economy because it reduces workers income. Therefore, the site work for the structural frame should be performed even during the whiter season. But the site work for the structural frame during that period cannot proceeds in the same way as during other periods, and requires a different method for estimating project duration. Through an analysis of time scheduling mechanism, actual working days are obtained for 1 cycle of typical floors in the structural frame during these periods, and non-working days of 5 years average are calculated based on calendar day using data of 5 years weather forecasts for that season. This study proposes an optimized way of estimating project duration for 1 cycle of typical floors in the structural frame during these periods. This estimating method uses the combined actual working days and non-working days of 5 years' average, and the estimated results are confirmed by being compared with field data. This study is expected to be used in estimating the construction duration of the structural frame during the winter season.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

Analysis of Structural Work Scheduling of Green Frame - Focusing on Apartment buildings - (Green Frame의 골조공사 공기 분석 연구 - 공동주택을 중심으로 -)

  • Lee, Sung-Ho;Kim, Shin-Eun;Kim, Gwang-Hee;Joo, Jin-Kyu;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • Apartment housings that adopt a bearing wall structure design, which account for a majority of the housing units available in Korea, are not free from structural constraints that limit the extension of their service life. The resulting need for reconstruction from the ground up requires a massive consumption of resources and energy, and triggers environmental pollution resulting from construction wastes. As a solution to such issues, the government enforces incentive schemes to promote a remodeling-friendly rahmen structure design. Green Frame, which is a novel concept of composite precast concrete structure to support rahmen structure apartment housing buildings, can address the constraints of bearing wall structure and conventional rahmen structure designs that limit the potential for remodeling projects, while reducing the term of construction. Therefore, this study aims to analyze the characteristics of Green Frame and its absolute term of construction, and compare the terms of frame work construction in apartment housing projects adopting different structural design approaches to illuminate their differences. In the end, Green Frame is found to be capable of reducing the term of construction in apartment housing projects. As the term of construction is a very critical element of a construction project, Green Frame will ultimately prove to be one of the key enablers to ensure the success of apartment housing construction projects.

Structural Design of a Cathode-ray Tube (CRT) to Improve its Mechanical Shockproof Character

  • Park, Sang-Hu;Kim, Won-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1361-1370
    • /
    • 2006
  • An electronic beam mis-landing phenomenon on the RGB (red/green/blue) -fluorescent surface has been considered as one of serious problems to be solved in cathode-ray tube (CRT), which is generally caused by mechanical shock and vibration. In this work, structural design concepts on the major parts of the CRT, such as a frame, a shadow mask, and a spring, are studied to improve the mechanical shockproof character of a CRT by FEM-analyses and experimental approaches ; a frame is newly designed to have strength employing the double-corner-beads which reduces considerably the distortion of the frame and the shadow mask : the edge-bead of a shadow-mask is redesigned to maintain the wide curved surface of a shadow-mask after mechanical shock : finally, a spring supporting the frame and the shadow-mask is designed to have enough flexibility along drop-direction. As an example, a conventional type of a 15inch CRT was utilized to demonstrate the feasibility and usefulness of this work. Overall, some favorable information on the structural design of the CRT is achieved, and the mechanical shockproof character of a 15-inch CRT is improved in the degree of 3G $(1G=9.81m/s^2)$ as an average-value.

Behavior of FRP strengthened RC brick in-filled frames subjected to cyclic loading

  • Singh, Balvir;Chidambaram, R. Siva;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.557-566
    • /
    • 2017
  • Fiber reinforced polymer (FRP) sheets are the most efficient structural materials in terms of strength to weight ratio and its application in strengthening and retrofitting of a structure or structural elements are inevitable. The performance enhancement of structural elements without increasing the cross sectional area and flexible nature are the major advantages of FRP in retrofitting/strengthening work. This research article presents a detailed study on the inelastic response of conventional and retrofitted Reinforced Concrete (RC) frames using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi-static loading. The hysteretic behaviour, stiffness degradation, energy dissipation and damage index are the parameters employed to analyse the efficacy of FRP strengthening of brick in-filled RC frames. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.