• Title/Summary/Keyword: Structural details

Search Result 645, Processing Time 0.023 seconds

Effect of Reinforcement Layout on Structural Performance of Reinforced Concrete Coupling Beams with High-strength Steel Bar (철근상세에 따른 고강도 철근이 사용된 철근콘크리트 연결보의 구조성능)

  • Jang, Seok-Joon;Jeong, Gwon-Young;Kim, Sun-Woo;Yun, Hyun-Do;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • This paper describes the experimental results for the structural performance of full-scale coupling beams with different reinforcement layout (diagonal and horizontal). For the reinforcements of the coupling beams, high-strength steel bars(SD500 and SD600) were used in order to improve workability and economic feasibility. The rigid steel frames and linked joints were used to maintain the clear span length (distance between both shear walls) of the coupling beam during the cyclic loading. Experimental results indicated that the diagonally reinforced coupling beam specimen could exhibit more ductile behavior compared to horizontally reinforced specimen. ACI318-14 code is applicable to design of coupling beam with diagonally reinforcement, however, that is overestimating the strength of horizontally reinforced coupling beam. It is remarkable that effective elastic stiffness values of both reinforcement details coupling beam significantly lees than ASCE 41-13.

Membrane Structural Design and Construction by Using Glued Laminated Timber (집성재를 이용한 막구조물의 시공 및 설계)

  • Hwang, Bu-Jin;Ko, Kwang-Woong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.49-52
    • /
    • 2008
  • Structural Wood is developed by purpose to make efficient use of wood resources. The biggest advantage of structural wood is stable as strength is high than wood product that is used by structure in existing. Order manufacture according to design details is available. It Is used to main structure elements to large spatial structure. Structure wood kind utilizes Glulam, prefabricated wood I-joists and laminated veneer lumber(LVL) and so on. Structural Design and construction of Open-air Stage Roof Structure is described in the presented paper. Architectural roof materials is used to PVF/PFLT membrane. Column and diagonal members is used to steel members(SS400), and Cantilever beam is used to Glulam assembled with different Grade laminations(10S-28B).

  • PDF

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

Experimental Study on Structural Performance of Steel Slit Damper According to Restrained Out-of-plane Deformation (면외변형 구속에 따른 강재슬릿댐퍼의 구조성능에 관한 실험적 연구)

  • Jin-Woo Kim;U-Jin Kwon;Kwang-Yong Choi;Young-Ju Kim;Hae-Yong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.86-94
    • /
    • 2023
  • In this study, a supplementary detail capable of restraining out-of-plane deformation was proposed for steel slit dampers, and a constant amplitude cyclic loading test was performed with the application of the proposed detail and the shape ratio of the damper as variables. Repeated hysteresis and cumulative plastic deformation according to the test results were analyzed. Repeated hysteresis of the slit damper with the proposed detail showed a stable spindle-shaped hysteresis within the set variable range, and no out-of-plane deformation of the damper was observed until ultimate state. It was confirmed that the restraining panel effect through the application of the proposed details is effective in terms of both the strength and deformation capacity of the damper. In addition, experimental parameters for the fatigue curve evaluation of slit dampers were derived in this study. Based on the results, it is judged that quantitative comparison of structural performance with various types of seismic devices will be possible in the future.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Hysteretic Behavior of R/C Shear Wall with Various Lateral Reinforcements in Boundary Columns for Cyclic Lateral Load (경계부재내 횡보강근 배근방법에 따른 R/C전단벽의 반복하중에 대한 이력거동)

  • Seo, Soo-Yeon;Oh, Tae-Gun;Kim, Kyeong-Tae;Yoon, Seong-Joe
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.357-366
    • /
    • 2010
  • This paper presents experimental results about shear wall with various lateral reinforcement details in boundary elements. The research objective is to study the structural behavior of shear wall with boundary column confined by rectangular spiral hoops and headed cross ties developed to improve workability in the fabrication of boundary columns. These two details can be fabricated in a factory and put together on-site after being delivered so that the construction work may be reduced. Main parameters in the experimental study were the types of hoop and cross tie: rectangular spiral hoop and headed cross tie vs. standard hoop and cross tie with hook. Four half scaled shear wall specimens with babel shape were made and tested by applying horizontal cyclic load under constant axial force, 10% of nominal compressive strength of concrete. Based on the test result, it was shown that the shear wall with rectangular spiral hoop and headed cross tie in boundary columns has structural capacity compatible with conventional shear wall. The specimen SW-Hh which has bigger hoop bar and higher volumetric ratio of transverse reinforcements than other showed improved energy dissipating characteristic but it presented a rapid reduction of strength after peak point. The results indicates that, it is necessary to consider volumetric ratio of transverse reinforcements as well as hoop space in designing of shear wall with boundary columns for improved strength and ductility.

Clip-type Binding Implement Effect on Anchorage Behavior of 90-Degree End-Hooked Transverse Reinforcement in Reinforced Concrete Columns (클립형 연결장치로 결속된 90도 갈고리를 갖는 띠철근의 정착거동)

  • Park, Kyoung-Yeon;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.72-80
    • /
    • 2020
  • The purpose of this study is to secure the same or more structural performance and constructability for the details of hooks cross-constructed at 135 degrees used as external-ties standard detail in RC columns, therefore, to the purpose of improving constructability, the clip-type binding implement was suggested and A total of 28 pull-out specimens were prepared with the parameters of concrete compressive strength and clip-embeded length, clip installation location to examine the anchorage behavior of the clip-type binding implement. The experiment was carried out. The results of the experiment confirmed that the anchorage strength of the clip-type binding implement was higher than the details of hooks cross-constructed at 135-degree regardless of the diameter of tie and concrete strength, embeded clip length, clip installation. and The 90-degree end hook with clip-type binding implement was showed a similar an anchorage behavior of 135-degree end-hooked transverse reinforcement, consequently, The 90-degree end hooked with clip-type binding implement is evaluated to be the same anchorage behavior and performance as standard 135-degree end hook detail.

Development on Reconstruction Cost Model for Decision Making of Bridge Maintenance (교량 유지관리 의사결정 지원을 위한 개축비용 산정모델 개발)

  • Sun, Jong-Wan;Lee, Dong-Yeol;Lee, Min-Jae;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.533-542
    • /
    • 2016
  • The periodic maintenance of bridges is necessary once they have been constructed and its cost depends on various factors, such as their condition, environmental conditions and so on. To make a decision support system, it is essential to establish a basic reconstruction cost model. In this study, a regression model is suggested for calculating the reconstruction cost for typical cases and influential factors, depending on the type of bridge and its components, by analyzing the basic bridge specifications based on the data of the Bridge Management System (BMS). The details for each case were estimated in consideration of the cost calculation variables. The details for each case were estimated in consideration of the cost calculation variables. The cost model for the new construction of the superstructure, substructure and foundation and the temporary bridge construction and demolition costs were drawn from the regression analysis of the estimation results of typical cases according to the cost calculation variables. The reconstruction costs for different types of bridge were obtained using the cost model and compared with those in the literature. The cost model developed herein is expected to be utilized effectively in maintenance decision making.