DOI QR코드

DOI QR Code

Experimental Study on Structural Performance of Steel Slit Damper According to Restrained Out-of-plane Deformation

면외변형 구속에 따른 강재슬릿댐퍼의 구조성능에 관한 실험적 연구

  • 김진우 (한국건설생활환경시험연구원 내진센터 ) ;
  • 권유진 (부산대학교 지진방재연구센터 ) ;
  • 최광용 (한국건축구조연구원 기술연구소 ) ;
  • 김영주 (한국건축구조연구원 기술연구소 ) ;
  • 박해용 (한밭대학교)
  • Received : 2022.12.07
  • Accepted : 2022.12.13
  • Published : 2023.02.28

Abstract

In this study, a supplementary detail capable of restraining out-of-plane deformation was proposed for steel slit dampers, and a constant amplitude cyclic loading test was performed with the application of the proposed detail and the shape ratio of the damper as variables. Repeated hysteresis and cumulative plastic deformation according to the test results were analyzed. Repeated hysteresis of the slit damper with the proposed detail showed a stable spindle-shaped hysteresis within the set variable range, and no out-of-plane deformation of the damper was observed until ultimate state. It was confirmed that the restraining panel effect through the application of the proposed details is effective in terms of both the strength and deformation capacity of the damper. In addition, experimental parameters for the fatigue curve evaluation of slit dampers were derived in this study. Based on the results, it is judged that quantitative comparison of structural performance with various types of seismic devices will be possible in the future.

본 연구에서는 강재 슬릿댐퍼를 대상으로 하여 면외 변형을 구속할 수 있는 보완상세를 제시하고, 제안상세 적용 유무와 댐퍼의 형상비를 변수로 하여 일정진폭 가력실험을 수행하였다. 실험결과에 따라 제안상세가 적용된 슬릿댐퍼의 반복이력은 설정된 변수 범위에서 모두 안정적인 방추형의 이력거동을 나타내었으며 종국거동까지 댐퍼의 면외변형은 관찰되지 않았다. 누적변형각 분석을 통해 제안상세가 적용된 댐퍼 시스템은 대조군에 비해 월등히 큰 소성변형능력을 확보할 수 있음을 확인하였다. 이러한 구조적 효과(구속패널효과)는 슬릿댐퍼의 형상비가 작을수록 크게 나타났다. 관련 국외기준을 참고하여 제안상세 적용유무에 따른 슬릿댐퍼의 피로곡선을 작성하고 예측곡선 제시를 위한 매개변수를 도출하였다. 본 연구의 결과를 토대로 향 후 다양한 종류의 제진장치의 구조성능에 대한 정량적인 비교가 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부(국토교통과학기술진흥원)의 국토교통지역혁신기술개발사업(과제번호 RS-2022-00143417)의 지원으로 수행되었습니다.

References

  1. Soong, T. T., and Dargush, G. F. (1997), Passive energy dissipation system in structural engineering, John Wiley & Sons, UK. 
  2. Whittaker, A. S., Bertero, V. V., Thompson, C. L., and Alonso, L. J. (1991), Seismic testing of steel plate energy dissipation devices, Earthquake Spectra, Sage, 7(4), 563-604. https://doi.org/10.1193/1.1585644
  3. Benavent Climent, A., Oh, S. H., and Akiyama, H. (1998), Ultimate energy absorption capacity of slit-type steel plates subjected to shear deformations, Journal of Structural Engineering, 503, 167-178. 
  4. Oh, S. H., Park, H. Y. (2022), Experimental study on seismic performance of steel slit damper under additional tensile load, Journal of Building Engineering, 50, 104110. 
  5. Korean Agency for Technology and Standards (2018), Rolled Steels for General Structure (KS D 3503). 
  6. Architectural Institute of Japan (2014), Recommended Provisions for Seismic Damping System Applied to Steel Structures, AIJ, Japan. 
  7. Tamai, H. (2015) On damage factor of shear panel damper, Journal of Structural and Construction Engineering, Architectural Institute of Japan, 80(707), 147-155.  https://doi.org/10.3130/aijs.80.147
  8. Manson, S. S. (1966) Thermal stress and low cycle fatigue, Journal of Applied Mechanics, American Society of Mechanical Engineers, 33(4), 957. 
  9. Tavernelli, J. F., and Coffin Jr, L. F. (1962) Experimental support for generalized equation predicting law cycle fatigue, Journal of Fluids Engineering, American Society of Mechanical Engineers, 84, 533-537. https://doi.org/10.1115/1.3658701