• 제목/요약/키워드: Structural Integrity

검색결과 1,261건 처리시간 0.034초

볼트-나사 결합체의 보수용접 건전성 평가 (Integrity Assessment of Weld Repair of Bolt-Screw Assembly)

  • 김만원;신인환;이경수
    • 한국압력기기공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.79-86
    • /
    • 2015
  • The purpose of this study is to evaluate structural integrity of a weldment which is partially screwed and then welded. Two finite element models are constructed and solved: operating temperature and internal pressure are considered in the first simple model, and welding process and normal operating condition including heat-up process are simulated in the second model. Structural integrity assessment criteria are satisfied with both finite element models, therefore the repair weldment finely sustains structural integrity of this assembly and prevents leakage. Stresses are dramatically increased when weld residual stress is considered, but it should be considered as a secondary stress.

Structural Integrity Evaluation of CANFLEX Fuel Bundle by Hydraulic Drag Load

  • H. Y. Kang;K. S. Sim;Lee, J. H.;Kim, T. H.;J. S. Jun;C. H. Chung;Park, J. H.;H. C. Suk
    • Nuclear Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.373-378
    • /
    • 1996
  • The CANFLEX fuel bundle has been developed by KAERI/AECL jointly to facilitate the use of various fuel cycles in CANDU-6 reactor. The structural analysis of the fuel bundles by hydraulic drag force is performed to evaluate the fuel integrity during the refuelling service. The present analysis method is newly developed for the structural integrity valuation by studying FEM modelling for the fuel bundles in a fuel channel. As compared the results of the mechanical strength test the displacement value of endplate given by analysis results shoo6 to be good agreement within 15% under the maximum design drag load. As the results of analysis, it is shown to keep the structural integrity of CANFLEX fuel bundles under hydraulic drag load during the refuelling service.

  • PDF

Evaluation of Structural Integrity and Performance Using Nondestructive Testing and Monitoring Techniques

  • Rhim, Hong-Chul
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.

  • PDF

STRUCTURAL INTEGRITY EVALUATION OF NUCLEAR FUEL WITH REDUCED WELDING CONDITIONS

  • Park, Nam-Gyu;Park, Joon-Kyoo;Suh, Jung-Min;Kim, Kyu-Tae;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.347-354
    • /
    • 2009
  • Welding is required for a connection between two different components in the nuclear fuel of a pressurized water reactor. This work relies on a mechanical experiment and analytic results to investigate the structural integrity of nuclear fuel in a situation where some components are not welded to each other. A series of lateral vibration tests are performed in a test facility, and the test structures are examined in terms of dynamic behavior. In the tests, the displacement signal at every grid structure that sustains fuel rods is measured and processed to identify the dynamic properties. The fluid-elastic stability of the structure is also analyzed to evaluate susceptibility to a cross flow with an assumed conservative cross flow distribution. The test and analysis results confirm that the structural integrity can be maintained even in the absence of some welding connections.

패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구 (Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition)

  • 김길동;이장규
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2008년도 춘계학술대회
    • /
    • pp.185-196
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Simple tension and AE tests were conducted against the 3 kind of welding test specimens. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multivariate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

  • PDF

패턴인식을 이용한 고장력강의 용접 구조건전성 평가에 대한 음향방출 사례연구: 인장시험을 중심으로 (Acoustic Emission Studies on the Structural Integrity Test of Welded High Strength Steel using Pattern Recognition: Focused on Tensile Test)

  • 김길동;이장규
    • 대한안전경영과학회지
    • /
    • 제10권4호
    • /
    • pp.127-134
    • /
    • 2008
  • The objective of this study is to evaluate the mechanical behaviors and structural integrity of the weldment of high strength steel by using an acoustic emission (AE) techniques. Monotonic simple tension and AE tests were conducted against the 3 kinds of welded specimen. In order to analysis the effectiveness of weldability, joinability and structural integrity, we used K-means clustering method as a unsupervised learning pattern recognition algorithm for obtained multi-variate AE main data sets, such as AE counts, energy, amplitude, hits, risetime, duration, counts to peak and rms signals. Through the experimental results, the effectiveness of the proposed method is discussed.

공력해석 및 구조시험을 통한 소형 복합재 블레이드의 구조 안전성 평가 (Structural Integrity through Aerodynamic Analysis and Structural Test for Small Wind Turbine Composite Blade)

  • 장윤정;정진환;이장호;강기원
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.63-68
    • /
    • 2012
  • This paper deals with the aerodynamic analysis and structural test under estimated loading condition for small composite blade, which is utilized in dual rotor wind turbine system. Firstly, the front and rear blades of dual rotor wind turbine system were modeled using reverse engineering method. And using finite volume method, the aerodynamic forces were analyzed at the rated and cutout wind speed to identify the pressure distribution on blades. And then, the full scale structural tests were conducted according to load and strength based methodology in IEC 61400-2 to identify the structural integrity of composite blade.

모노레일 대차 프레임에 대한 구조 안전성 및 피로강도 평가 (An Evaluation of Structural Integrity and Fatigue Strength for the Bogie Frame of Monorail)

  • 고희영;신광복;이광섭;이은규
    • 한국철도학회논문집
    • /
    • 제13권5호
    • /
    • pp.469-475
    • /
    • 2010
  • 본 논문은 국내에서 개발중인 모노레일 대차 프레임에 대해 구조 안전성 및 피로강도를 평가하였다. 현재 모노레일 대차 프레임에 대한 평가기준은 없는 실정이며, 이에 구조 안전성 및 피로강도 평가는 유럽규격인 UIC 615-4 기준을 적용하여 수행하였다. 이때, 설계된 대차 프레임에 대해 각 하중조건에서의 변위 및 Von-Mises 응력 결과를 통해 구조 안전성을 평가하였다. 그리고 피로강도는 UIC 615-4 기준의 규정에 따라 조합 주 운용하중조건에 의해 평가되고, 일괄처리 기능을 갖는 winLIFE v3.1을 이용한 피로해석 결과와 비교 검증하였다. 본 연구를 통하여 설계된 대차 프레임은 구조적 안전성 및 피로강도를 만족하였으며, 일괄처리 기능을 갖는 피로해석은 조합하중을 이용한 기존 피로해석보다 더 효율적임을 확인하였다.

육각 격자구조를 갖는 콘형 복합재 격자구조체의 구조안전성 평가 기법 연구 (Study on Evaluation Method of Structural Integrity for Cone-Type Composite Lattice Structures with Hexagonal Cell)

  • 임재문;강승구;신광복;이상우
    • Composites Research
    • /
    • 제31권4호
    • /
    • pp.156-160
    • /
    • 2018
  • 본 논문에서는 콘형 복합재 격자구조체의 구조안전성 평가 기법에 대해 연구를 수행하였다. 콘형 복합재격자구조체의 구조안전성 평가는 유한요소해석을 통해 수행되었다. 구조안전성 평가를 위한 유한요소모델은 솔리드 요소를 사용하여 생성하였다. 섬유 교차부와 비교차부의 물성 차이를 고려하기 위해 섬유 체적률을 고려한 기계적 물성을 적용하였다. 구조해석 기법의 검증을 위해 콘형 복합재 격자구조체의 압축 시험을 수행하였다. 시험과 해석의 비교 결과, 약 2%의 변위 오차가 발생하여 잘 일치하는 것을 확인하였다.