• Title/Summary/Keyword: Structural Error

Search Result 1,007, Processing Time 0.022 seconds

A Structural Approach to On-line Signature Verification (구조적 접근방식의 온라인 자동 서명 겁증 기법)

  • Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.385-396
    • /
    • 2005
  • In this paper, a new structural approach to on-line signature verification is presented. A primitive pattern is defined as a part segmented by a local minimal position of speed. And a structural description of signature is composed of subpatterns which are defined as such forms as rotation shape, cusp shape and bell shape, acquired by composition of the primitives regarding the directional changes. As the matching method to find identical parts between two signatures, a modified DP(dynamic programming) matching algorithm is presented. And also, variation and complexity of local parts are computed from the training samples, and reference model and decision boundary are derived from these. Error rate, execution time and memory usage are compared among the functional approach, the parametric approach and the proposed structural approach. It is found that the average error rate can be reduced from 14.2% to 4.05% when the local parts of a signature are weighted and the complexity is used as a factor of decision threshold. Though the error rate is similar to that of functional approaches. time consumption and memory usage of the proposed structural approach are shown to be very effective.

  • PDF

A parameter calibration method for PFC simulation: Development and a case study of limestone

  • Xu, Z.H.;Wang, W.Y.;Lin, P.;Xiong, Y.;Liu, Z.Y.;He, S.J.
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • The time-consuming and less objectivity are the main problems of conventional micromechanical parameters calibration method of Particle Flow Code simulations. Thus this study aims to address these two limitation of the conventional "trial-and-error" method. A new calibration method for the linear parallel bond model (CM-LPBM) is proposed. First, numerical simulations are conducted based on the results of the uniaxial compression tests on limestone. The macroscopic response of the numerical model agrees well with the results of the uniaxial compression tests. To reduce the number of the independent micromechanical parameters, numerical simulations are then carried out. Based on the results of the orthogonal experiments and the multi-factor variance analysis, main micromechanical parameters affecting the macro parameters of rocks are proposed. The macro-micro parameter functions are ultimately established using multiple linear regression, and the iteration correction formulas of the micromechanical parameters are obtained. To further verify the validity of the proposed method, a case study is carried out. The error between the macro mechanical response and the numerical results is less than 5%. Hence the calibration method, i.e., the CM-LPBM, is reliable for obtaining the micromechanical parameters quickly and accurately, providing reference for the calibration of micromechanical parameters.

Adaptive Finite Element Analysis of 2-D Plane Problems Using the rp-Method (절점이동과 단항증가법에 의한 이차원 평면문제의 적응 유한요소 해석)

  • 박병성;임장근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Adaptive finite element analysis, in which its solution error meets with the user defined allowable error, is recently used to improve the reliability of finite element analysis results. This adaptive analysis is composed of two procedures; one is the error estimation of an analysis result and the other is the reconstruction of finite elements. In the (p-method, an element size is controlled by relocating of nodal positions (r-method) and the order of an element shape function is determined by the hierarchical polynomial (p-method) corresponding to the clement solution error by the enhanced SPR. In order to show the effectiveness and the accuracy of the suggested rp-method, various numerical examples were analyzed and these analysis results were examined by comparing with those obtained by the existed methods.

A Posteriori Error Estimation Based On The Variation Of Mapping Function For Finite Element Method (사상 함수의 변분을 이용한 유한요소 해석의 오차 분석)

  • 박시형;김지환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.86-93
    • /
    • 2002
  • A new error estimation method is proposed. This utilizes the variation of energy functional about the mapping function between the global and the master elements. The resultant system of equations is the weak form of the generalized conservation checks. However, This formulation has an important information about the relations between the connected elements. In other words, some relations between the connected elements are obtained and these can be used very usefully to measure it posteriori error. In this paper, the explicit formulations are presented for the 1-dimensional model and the 2-dimensional model problems. Numerical results are provided for first order shear deformation theody of beam model and the plane stress problem.

  • PDF

A modification of double projection method for adaptive analysis of Element-free Galerkin Method (적응적 Element-free Galerkin Method 해석을 위한 이중투영법의 개선)

  • 이계희;정흥진;이태열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.615-622
    • /
    • 2002
  • In this paper, the modification of double projection method for the adaptive analysis of Element-free Galerkin(EFG) method were proposed. As results of the double projection method, the smoothed error profile that is adequate for adaptive analysis was obtained by re-projection of error that means the differences of EFG stress and projected stress. However, it was found that the efficiency of double projection method is degraded as increase of the numerical integration order. Since, the iterative refinement to single step error estimation made the same effect as increasing of integration order, the application of the iterative refinement base on double projection method could be produced the inadequately refined analysis model. To overcome this defect, a modified scheme of double projection were proposed. In the numerical example, the results did not show degradation of double projection effect in iterative refinement and the efficiency of proposed scheme were proved.

  • PDF

An SI Scheme for the Assessment of Structural Damage and Damping (구조물 손상탐지 및 감쇄평가를 위한 시간 영역에서의 SI 기법)

  • 이해성;강주성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.430-433
    • /
    • 2003
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least square errors between the measured acceleration and the calculated acceleration by a mathematical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping in SI. The regularization technique is applied to alleviate the ill-posed characteristics of inverse problems. The validity of the proposed method is demonstrated by an experimental study on a shear building model.

  • PDF

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

Force-Sensing Error Propagation in Multi-Axis Force Sensors (다축 힘센서에서 힘감지 오차의 전파)

  • 강철구
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2688-2695
    • /
    • 2000
  • In multi-axis force sensor, compliance matrices representing structural behaviour of internal sensor bodies play an important role in decoupled sensing and accuracy, Recently, error propagation through compliance matrices has been studied via approximation approach. However the upper bound of measured force error has not been known. In this paper, error propagation in force sensing is analysed in a unified way when both strain measurement error and compliance matrix error exist, and the upper bound of the measured force error is derived exactly(not approximately). The analysis is examined through a numerical example.

Identification of Model Parameters by Sequential Prediction Error Method (순차적 예측오차 방법에 의한 구조물의 모우드 계수 추정)

  • 윤정방;이창근
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.143-148
    • /
    • 1990
  • The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the auto regressive and moving average model with auxiliary stochastic input(ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story budding model subject to ground exitations.

  • PDF