Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.1.097

A parameter calibration method for PFC simulation: Development and a case study of limestone  

Xu, Z.H. (Geotechnical and Structural Engineering Research Center, Shandong University)
Wang, W.Y. (Geotechnical and Structural Engineering Research Center, Shandong University)
Lin, P. (Geotechnical and Structural Engineering Research Center, Shandong University)
Xiong, Y. (Geotechnical and Structural Engineering Research Center, Shandong University)
Liu, Z.Y. (Geotechnical and Structural Engineering Research Center, Shandong University)
He, S.J. (Geotechnical and Structural Engineering Research Center, Shandong University)
Publication Information
Geomechanics and Engineering / v.22, no.1, 2020 , pp. 97-108 More about this Journal
Abstract
The time-consuming and less objectivity are the main problems of conventional micromechanical parameters calibration method of Particle Flow Code simulations. Thus this study aims to address these two limitation of the conventional "trial-and-error" method. A new calibration method for the linear parallel bond model (CM-LPBM) is proposed. First, numerical simulations are conducted based on the results of the uniaxial compression tests on limestone. The macroscopic response of the numerical model agrees well with the results of the uniaxial compression tests. To reduce the number of the independent micromechanical parameters, numerical simulations are then carried out. Based on the results of the orthogonal experiments and the multi-factor variance analysis, main micromechanical parameters affecting the macro parameters of rocks are proposed. The macro-micro parameter functions are ultimately established using multiple linear regression, and the iteration correction formulas of the micromechanical parameters are obtained. To further verify the validity of the proposed method, a case study is carried out. The error between the macro mechanical response and the numerical results is less than 5%. Hence the calibration method, i.e., the CM-LPBM, is reliable for obtaining the micromechanical parameters quickly and accurately, providing reference for the calibration of micromechanical parameters.
Keywords
discrete element method; particle flow code; parallel bond model; micromechanical parameters; calibration method;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Gracia, F., Villard, P. and Richefeu, V. (2019), "Comparison of two numerical approaches (DEM and MPM) applied to unsteady flow", Comput. Particle Mech., 6(4), 591-609. https://doi.org/10.1007/s40571-019-00236-1.   DOI
2 Guo, W.B., Hu, B., Cheng, J.L. and Wang, B.F. (2020), "Modeling time-dependent behavior of hard sandstone using the DEM method", Geomech. Eng., 20(6), 517-525. https://doi.org/10.12989/gae.2020.20.6.517.   DOI
3 Haeri, H., Sarfarazi, V., Zhu, Z.M. and Moosavi, E. (2019), "Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials", Struct. Eng. Mech., 69(1), 11-20. https://doi.org/10.12989/sem.2019.69.1.011.   DOI
4 Haeri, H., Sarfarazi, V., Zhu, Z.M. and Nejati, H.R. (2019), "Numerical simulations of fracture shear test in anisotropy rocks with bedding layers", Adv. Concrete Construct., 7(4), 241-247. https://doi.org/10.12989/acc.2019.7.4.241.   DOI
5 Hasanpour, R., Ozcelik, Y., Yilmazkaya, E. and Sohrabian, B. (2016), "DEM modeling of a monowire cutting system", Arab. J. Geosci., 9(20), 11. https://doi.org/10.1007/s12517-016-2710-5.   DOI
6 Hashemi, S.S., Momeni, A.A. and Melkoumian, N. (2014), "Investigation of borehole stability in poorly cemented granular formations by discrete element method", J. Petrol. Sci. Eng., 113, 23-35. https://doi.org/10.1016/j.petrol.2013.11.031.   DOI
7 Hofmann, H., Babadagli, T., Yoon, J.S., Blocher, G. and Zimmermann, G. (2016), "A hybrid discrete/finite element modeling study of complex hydraulic fracture development for enhanced geothermal systems (EGS) in granitic basements", Geothermics, 64, 362-381. https://doi.org/10.1016/j.geothermics.2016.06.016.   DOI
8 Jafri, T.H. and Yoo, H. (2018), "REV application in DEM analysis of non-vibrational rock splitting method to propose feasible borehole spacing", Appl. Sci., 8(3), 17, https://doi.org/10.3390/app8030335.
9 Kwok, Y. and Bolton, M.D. (2010), "DEM simulations of thermally activated creep in soils", Geotechnique, 60(6), 425-433. https://doi.org/10.1680/geot.2010.60.6.425.   DOI
10 Khazaei, C., Hazzard, J. and Chalaturnyk, R. (2015), "Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling", Comput. Geotech., 67, 94-102. https://doi.org/10.1016/j.compgeo.2015.02.012.   DOI
11 Lin, P., Li, S.C., Xu, Z.H., Wang, J. and Huang, X. (2019), "Water inflow prediction during heavy rain while tunneling through Karst fissured zones", Int. J. Geomech., 19(8), 04019093. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001478.   DOI
12 Mehranpour, M.H., Kulatilake, P., Ma, X.G. and He, M.C. (2018), "Development of new three-dimensional rock mass strength criteria", Rock Mech. Rock Eng., 51(11), 3537-3561. https://doi.org/10.1007/s00603-018-1538-6.   DOI
13 Xu, Z.H., Wang, W.Y., Lin, P., Wang, X.T. and Yu, T.F. (2020c), "Buffering effect of overlying sand layer technology for dealing with rockfall disaster in tunnels and a case study", Int. J. Geomech., 20(8), 04020127. https://10.1061/(ASCE)GM.1943-5622.0001751.   DOI
14 Yang, B., Yue, J. and Lei, S. (2006), "A study on the effects of microparameters on macroproperties for specimens created by bonded particles", Eng. Comput., 23(6), 607-631. https://doi.org/10.1108/02644400610680333.   DOI
15 Zhou, Y., Wu, S., Jiao, J. and Zhang, X. (2011), "Research on mesomechanical parameters of rock and soil mass based on BP neural network", Rock Soil Mech., 32(12), 3821-3826. https://doi.org/10.16285/j.rsm.2011.12.010.   DOI
16 Lotidis, M.A., Nomikos, P.P. and Sofianos, A.I. (2019), "Numerical study of the fracturing process in marble and plaster hollow plate specimens subjected to uniaxial compression", Rock Mech. Rock Eng., 52(11), 4361-4386. https://doi.org/10.1007/s00603-019-01884-8.   DOI
17 Manouchehrian, A., Sharifzadeh, M., Marji, M.F. and Gholamnejad, J. (2014), "A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression", Arch. Civ. Mech. Eng., 14(1), 40-52. https://doi.org/10.1016/j.acme.2013.05.008.   DOI
18 Meidani, M., Meguid, M.A. and Chouinard, L.E. (2018), "Estimating earth loads on buried pipes under axial loading condition: Insights from 3D discrete element analysis", Int. J. Geo-Eng., 9(1), 5. https://doi.org/10.1186/s40703-018-0073-3.   DOI
19 Potyondy, D. (2018), "Material-Modeling Support in PFC [fistPkg26]", Itasca Consulting Group, Inc., Minneapolis, Minnesota, U.S.A.
20 Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.   DOI
21 Poulsen, B.A., Adhikary, D. and Guo, H. (2018), "Simulating mining-induced strata permeability changes", Eng. Geol., 237, 208-216. https://doi.org/10.1016/j.enggeo.2018.03.001.   DOI
22 Wu, X.J. (2017), "Study on mechanism of seepage and water-inrush from filled Karst conduit in tunnel", China University of Mining and Technology, Beijing, China.
23 Sarfarazi, V., Haeri, H., Shemirani, A.B., Zhu, Z.M. and Marji, M.F. (2018), "Experimental and numerical simulating of the crack separation on the tensile strength of concrete", Struct. Eng. Mech., 66(5), 569-582. https://doi.org/10.12989/sem.2018.66.5.569.   DOI
24 Shemirani, A.B., Haeri, H., Sarfarazi, V., Akbarpour, A. and Babanouri, N. (2018), "The discrete element method simulation and experimental study of determining the mode I stress-intensity factor", Struct. Eng. Mech., 66(3), 379-386. https://doi.org/10.12989/sem.2018.66.3.379.   DOI
25 Shi, C., Yang, W., Yang, J. and Chen, X. (2019), "Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code", Granul. Matter, 21(2), 38. https://doi.org/10.1007/s10035-019-0889-3.   DOI
26 Xu, Z.H., Huang, X., Li, S.C., Lin, P., Shi, X.S. and Wu, J. (2020a), "A new slice-based method for calculating the minimum safe thickness for a filled-type karst cave", Bull. Eng. Geol. Environ., 79(2), 1097-1111. https://10.1007/s10064-019-01609-9.   DOI
27 Xu, Z.H., Lin, P., Xing, H.L. and Wang, J. (2020b), "Mathematical modeling of cumulative erosion ratio for suffusion in soils", Proc. Inst. Civ. Eng. Geotech. Eng., 1-11. https://doi.org/10.1680/jgeen.19.00082.
28 Bahaaddini, M., Hagan, P., Mitra, R. and Hebblewhite, B.K. (2016), "Numerical study of the mechanical behavior of nonpersistent jointed rock masses", Int. J. Geomech., 16(1), 1-10. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000510.
29 Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical direct shear tests to model the shear behaviour of rock joints", Comput. Geotech., 51, 101-115, https://doi.org/10.1016/j.compgeo.2013.02.003.   DOI
30 Ajamzadeh, M.R., Sarfarazi, V., Haeri, H. and Dehghani, H. (2018), "The effect of micro parameters of PFC software on the model calibration", Smart Struct. Syst., 22(6), 643-662. https://doi.org/10.12989/sss.2018.22.6.643.   DOI
31 Bahrani, N. and Kaiser, P.K. (2017), "Estimation of confined peak strength of crack-damaged rocks", Rock Mech. Rock Eng., 50(2), 309-326. https://doi.org/10.1007/s00603-016-1110-1.   DOI
32 Bock, S. and Prusek, S. (2015), "Numerical study of pressure on dams in a backfilled mining shaft based on PFC3D code", Comput. Geotech., 66, 230-244. https://doi.org/10.1016/j.compgeo.2015.02.005.   DOI
33 De Silva, V.R.S. and Ranjith, P.G. (2020), "A study of rock joint influence on rock fracturing using a static fracture stimulation method", J. Mech. Phys. Solids, 137, 21. https://doi.org/10.1016/j.jmps.2019.103817.
34 Chen, Q., Zhang, C., Yang, C., Ma, C. and Pan, Z. (2019), "Effect of fine-grained dipping interlayers on mechanical behavior of tailings using discrete element method", Eng. Anal. Boundary Elem., 104, 288-299. https://doi.org/10.1016/j.enganabound.2019.03.029.   DOI
35 Cundall, P.A. and Strack, O.D.L. (1979), "Discrete numerical model for granular assemblies", Geotechnique, 29(1), 41-65. https://doi.org/10.1680/geot.1979.29.1.47.